Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.




Amorphous phases are detected over large regions of the Martian surface from orbit and in more localized deposits by rovers on the surface. Amorphous silicates can be primary or secondary in origin, both having formed through very different processes, so the unambiguous identification of these phases is important for understanding the geologic history of Mars. Secondary amorphous silicates are poorly understood and underrepresented in spectral libraries because they lack the long-range structural order that makes their crystalline counterparts identifiable in most analytical techniques. Fortunately, even amorphous materials have some degree of short-range order so that distinctions can be made with …

Contributors
Smith, Rebecca Jean, Christensen, Philip, Shock, Everett, et al.
Created Date
2016

The collision between the Indian and Eurasian tectonic plates marked the onset of the rise of the Himalayan-Tibetan orogen, but also brought about profound changes to the Earth's oceans and climate. The exact sequence of events that occurred during this collision is poorly understood, leading to a wide range of estimates of its age. The Indus and Yarlung sutures are generally considered to represent the final collision between India and Eurasia, and together form a mostly continuous belt that can be traced over 2000 km along strike. In the western portions of the orogen the Karakoram Fault introduces a key …

Contributors
Borneman, Nathaniel, Hodges, Kip, Reynolds, Stephen, et al.
Created Date
2016

Chemical and physical interactions of flowing ice and rock have inexorably shaped planetary surfaces. Weathering in glacial environments is a significant link in biogeochemical cycles – carbon and strontium – on Earth, and may have once played an important role in altering Mars’ surface. Despite growing recognition of the importance of low-temperature chemical weathering, these processes are still not well understood. Debris-coated glaciers are also present on Mars, emphasizing the need to study ice-related processes in the evolution of planetary surfaces. During Earth’s history, subglacial environments are thought to have sheltered communities of microorganisms from extreme climate variations. On Amazonian …

Contributors
Rutledge, Alicia Marie, Christensen, Philip R, Shock, Everett, et al.
Created Date
2015

The search for life on Mars is a major NASA priority. A Mars Sample Return (MSR) mission, Mars 2020, will be NASA's next step towards this goal, carrying an instrument suite that can identify samples containing potential biosignatures. Those samples will be later returned to Earth for detailed analysis. This dissertation is intended to inform strategies for fossil biosignature detection in Mars analog samples targeted for their high biosignature preservation potential (BPP) using in situ rover-based instruments. In chapter 2, I assessed the diagenesis and BPP of one relevant analog habitable Martian environment: a playa evaporite sequence within the Verde …

Contributors
Shkolyar, Svetlana, Farmer, Jack, Semken, Steven, et al.
Created Date
2016

Early spacecraft missions to Mars, including the Marnier and Viking orbiters and landers revealed a morphologically and compositionally diverse landscape that reshaped widely held views of Mars. More recent spacecraft including Mars Global Surveyor, Mars Odyssey, Mars Express, Mars Reconnaissance Orbiter, and the Mars Exploration Rovers have further refined, enhanced, and diversified our understanding of Mars. In this dissertation, I take a multiple-path approach to planetary and Mars science including data analysis and instrument development. First, I present several tools necessary to effectively use new, complex datasets by highlighting unique and innovative data processing techniques that allow for the regional …

Contributors
Edwards, Christopher Scott, Christensen, Philip R, Bell, James, et al.
Created Date
2012

The present understanding of the formation and evolution of the earliest bodies in the Solar System is based in large part on geochemical and isotopic evidences contained within meteorites. The differentiated meteorites (meteorites originating from bodies that have experienced partial to complete melting) are particularly useful for deciphering magmatic processes occurring in the early Solar System. A rare group of differentiated meteorites, the angrites, are uniquely suited for such work. The angrites have ancient crystallization ages, lack secondary processing, and have been minimally affected by shock metamorphism, thus allowing them to retain their initial geochemical and isotopic characteristics at the …

Contributors
Sanborn, Matthew Edward, Wadhwa, Meenakshi, Hervig, Richard, et al.
Created Date
2012