Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Date Range
2011 2018


The Byrd Glacier region of Antarctica is important for understanding the tectonic development and landscape evolution of the Transantarctic Mountains (TAM). This outlet glacier crossing the TAM marks a major discontinuity in the Neoproterozoic-early Paleozoic Ross orogen. The region has not been geologically mapped in detail, but previous studies have inferred a fault to exist beneath and parallel to the direction of flow of Byrd Glacier. Thermochronologic analysis has never been undertaken across Byrd Glacier, and little is known of the exhumation history of the region. The objectives of this study are to assess possible differential movement across the inferred …

Contributors
Foley, Daniel Joseph, Stump, Edmund, Whipple, Kelin X, et al.
Created Date
2011

The San Andreas Fault (SAF) is the primary structure within a system of faults accommodating motion between the North American and Pacific plates. Physical models of faulting and characterizations of seismic hazard are informed by investigations of paleoseismology, slip distribution, and slip rate. The impact of earthquakes on people is due in large part to social vulnerability. This dissertation contributes an analysis about the relationships between earthquake hazard and social vulnerability in Los Angeles, CA and investigations of paleoseismology and fault scarp array complexity on the central SAF. Analysis of fault scarp array geometry and morphology using 0.5 m digital …

Contributors
Toke, Nathan A., Arrowsmith, J R, Boone, Christopher G, et al.
Created Date
2011

Olympus Mons is the largest volcano on Mars. Previous studies have focused on large scale features on Olympus Mons, such as the basal escarpment, summit caldera complex and aureole deposits. My objective was to identify and characterize previously unrecognized and unmapped small scale features to understand the volcanotectonic evolution of this enormous volcano. For this study I investigated flank vents and arcuate graben. Flank vents are a common feature on composite volcanoes on Earth. They provide information on the volatile content of magmas, the propagation of magma in the subsurface and the tectonic stresses acting on the volcano. Graben are …

Contributors
Peters, Sean I., Christensen, Philip R, Clarke, Amanda B, et al.
Created Date
2015

Previous workers hypothesized that lunar Localized Pyroclastic Deposits (LPDs) represent products of vulcanian-style eruptions, since some have low proportions of juvenile material. The objective of the first study is to determine how juvenile composition, calculated using deposit and vent volumes, varies among LPDs. I used Lunar Reconnaissance Orbiter Camera Narrow Angle Camera (LROC NAC) digital terrain models (DTMs) to generate models of pre-eruption surfaces for 23 LPDs and subtracted them from the NAC DTMs to calculate deposit and vent volumes. Results show that LPDs have a wide range of juvenile compositions and thinning profiles, and that there is a positive …

Contributors
Keske, Amber, Christensen, Philip R, Robinson, Mark S, et al.
Created Date
2018

The Himalayan orogenic system is one of the youngest and most spectacular examples of a continent-continent collision on earth. Although the collision zone has been the subject of extensive research, fundamental questions remain concerning the architecture and evolution of the orogen. Of particular interest are the structures surrounding the 5 km high Tibetan Plateau, as these features record both the collisional and post-collisional evolution of the orogen. In this study we examine structures along the southwestern margin of the Tibetan Plateau, including the Karakoram (KFS) and Longmu Co (LCF) faults, and the Ladakh, Pangong and Karakoram Ranges. New low-temperature thermochronology …

Contributors
Bohon, Wendy, Arrowsmith, Ramon, Hodges, Kip V, et al.
Created Date
2014

The tectonic significance of the physiographic transition from the low-relief Tibetan plateau to the high peaks, rugged topography and deep gorges of the Himalaya is the source of much controversy. Some workers have suggested the transition may be structurally controlled (e.g. Hodges et al., 2001), and indeed, the sharp change in geomorphic character across the transition strongly suggests differential uplift between the Himalayan realm and the southernmost Tibetan Plateau. Most Himalayan researchers credit the South Tibetan fault system (STFS), a family of predominantly east-west trending, low-angle normal faults with a known trace of over 2,000 km along the Himalayan crest …

Contributors
Mcdermott, Jeni Amber, Hodges, Kip V, Whipple, Kelin X, et al.
Created Date
2012

Quantifying the temporal and spatial evolution of active continental rifts contributes to our understanding of fault system evolution and seismic hazards. Rift systems also preserve robust paleoenvironmental records and are often characterized by strong climatic gradients that can be used to examine feedbacks between climate and tectonics. In this thesis, I quantify the spatial and temporal history of rift flank uplift by analyzing bedrock river channel profiles along footwall escarpments in the Malawi segment of the East Africa Rift. This work addresses questions that are widely applicable to continental rift settings: (1) Is rift-flank uplift sufficiently described by theoretical elliptical …

Contributors
Robinson, Scott Michael, Heimsath, Arjun M, Whipple, Kelin X, et al.
Created Date
2014

Understanding topography developed above an active blind thrust fault is critical to quantifying the along-strike variability of the timing, magnitude, and rate of fault slip at depth. Hillslope and fluvial processes respond to growing topography such that the existing landscape is an indicator of constructional and destruction processes. Light detection and ranging (lidar) data provide a necessary tool for fine-scale quantitative understanding of the topography to understand the tectonic evolution of blind thrust faulting. In this thesis, lidar topographic data collected in 2014 are applied to a well-studied laterally propagating anticline developed above a blind thrust fault in order to …

Contributors
Kleber, Emily, Arrowsmith, Ramón, DeVecchio, Duane E, et al.
Created Date
2015

The Himalaya are the archetypal example of a continental collision belt, formed by the ongoing convergence between India and Eurasia. Boasting some of the highest and most rugged topography on Earth, there is currently no consensus on how climatic and tectonic processes have combined to shape its topographic evolution. The Kingdom of Bhutan in the eastern Himalaya provides a unique opportunity to study the interconnections among Himalayan climate, topography, erosion, and tectonics. The eastern Himalaya are remarkably different from the rest of the orogen, most strikingly due to the presence of the Shillong Plateau to the south of the Himalayan …

Contributors
Adams, Byron Allen, Whipple, Kelin X, Hodges, Kip V, et al.
Created Date
2014

Sedimentary basins in the Afar Depression, Ethiopia archive the progression of continental breakup, record regional changes in east African climate and volcanism, and host what are arguably the most important fossiliferous strata for studying early human evolution and innovation. Significant changes in rift tectonics, climate, and faunal assemblages occur between 3-2.5 million years ago (Ma), but sediments spanning this time period are sparse. In this dissertation, I present the results of a geologic investigation targeting sediments between 3-2.5 Ma in the central and eastern Ledi Geraru (CLG and ELG) field areas in the lower Awash Valley, using a combination of …

Contributors
Dimaggio, Erin Nicole, Arrowsmith, J Ramon, Whipple, Kelin X, et al.
Created Date
2013