Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


The goal of this study is to gain a better understanding of earthquake distribution and regional tectonic structure across Arizona. To achieve this objective, I utilized seismic data from EarthScope's USArray Transportable Array (TA), which was deployed in Arizona from April 2006 to March 2009. With station spacing of approximately 70 km and ~3 years of continuous three-component broadband seismic data, the TA provided an unprecedented opportunity to develop the first seismicity catalog for Arizona without spatial sampling bias. In this study I developed a new data analysis workflow to detect smaller scale seismicity across a regional study area, which …

Contributors
Lockridge, Jeffrey, Fouch, Matthew J, Arrowsmith, Ramon, et al.
Created Date
2011

Meter-resolution topography gathered by LiDAR (Light Detection and Ranging) has become an indispensable tool for better understanding of many surface processes including those sculpting landscapes that record information about earthquake hazards for example. For this reason, and because of the spectacular representation of the phenomena that these data provide, it is appropriate to integrate these data into Earth science educational materials. I seek to answer the following research question: "will using the LiDAR topography data instead of, or alongside, traditional visualizations and teaching methods enhance a student's ability to understand geologic concepts such as plate tectonics, the earthquake cycle, strike-slip …

Contributors
Robinson, Sarah E., Arrowsmith, Ramon, Reynolds, Stephen J, et al.
Created Date
2011

The study of fault zones is a critical component to understanding earthquake mechanics and seismic hazard evaluations. Models or simulations of potential earthquakes, based on fault zone properties, are a first step in mitigating the hazard. Theoretical models of earthquake ruptures along a bi-material interface result in asymmetrical damage and preferred rupture propagation direction. Results include greater damage intensity within stiffer material and preferred slip in the direction of the more compliant side of the fault. Data from a dense seismic array along the Clark strand of the SJFZ at Sage Brush Flat (SGB) near Anza, CA, allows for analysis …

Contributors
Wade, Adam Micahel, Arrowsmith, Ramon, Reynolds, Stephen, et al.
Created Date
2018