Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Status
  • Public
Date Range
2011 2019


In this thesis, I investigate possible formation processes in the northern Claritas Fossae and the large Thaumasia graben on Mars. In particular, I assess three proposed formation hypotheses for the region: a mega-landslide across the Thaumasia plateau, originating in Tharsis and moving to the south-west; a rift system pulling apart Claritas Fossae and opening the large Thaumasia graben generally propagating in a north-south direction: and extension caused by uplifting from underlying dike swarms. Using digital terrain models (DTMs) from the High Resolution Stereo Camera (HRSC) aboard Mars Express and visual images from the Context Camera (CTX) aboard the Mars Reconnaissance …

Contributors
Studer-Ellis, Genevieve Lynn, Williams, David A., Christensen, Philip R., et al.
Created Date
2019

There are more than 20 active missions exploring planets and small bodies beyond Earth in our solar system today. Many more have completed their journeys or will soon begin. Each spacecraft has a suite of instruments and sensors that provide a treasure trove of data that scientists use to advance our understanding of the past, present, and future of the solar system and universe. As more missions come online and the volume of data increases, it becomes more difficult for scientists to analyze these complex data at the desired pace. There is a need for systems that can rapidly and …

Contributors
Kerner, Hannah Rae, Bell, James F, Ben Amor, Heni, et al.
Created Date
2019

Water has shaped the surface of Mars, recording previous environments and inspiring the search for extinct life beyond Earth. While conditions on the Martian surface today are not conducive to the presence of liquid water, ancient erosional and depositional features indicate that this was not always so. Quantifying the regional and global history of water on Mars is crucial to understanding how the planet evolved, where to focus future exploration, and implications for water on Earth. Many sites on Mars contain layered sedimentary deposits, sinuous valleys with delta shaped deposits, and other indications of large lakes. The Hypanis deposit is …

Contributors
Adler, Jacob, Bell, James, Christensen, Philip, et al.
Created Date
2019

Remote sensing in visible to near-infrared wavelengths is an important tool for identifying and understanding compositional differences on planetary surfaces. Electronic transitions produce broad absorption bands that are often due to the presence of iron cations in crystalline mineral structures or amorphous phases. Mars’ iron-rich and variably oxidized surface provides an ideal environment for detecting spectral variations that can be related to differences in surface dust cover or the composition of the underlying bedrock. Several imaging cameras sent to Mars include the capability to selectively filter incoming light to discriminate between surface materials. At the coarse spatial resolution provided by …

Contributors
Wellington, Danika, Bell III, James F, Christensen, Philip R, et al.
Created Date
2018

Interpreting the petrogenesis of materials exposed on the surface of planets and asteroids is fundamental to understanding the origins and evolution of the inner Solar System. Temperature, pressure, fO2, and bulk composition directly influence the petrogenetic history of planetary surfaces and constraining these variables with remote sensing techniques is challenging. The integration of remote sensing data with analytical investigations of natural samples, lab-based spectroscopy, and thermodynamic modelling improves our ability to interpret the petrogenesis of planetary materials. A suite of naturally heated carbonaceous chondrite material was studied with lab-based spectroscopic techniques, including visible near-infrared and Fourier transform infrared reflectance spectroscopy. …

Contributors
Haberle, Christopher William, Christensen, Philip R., Garvie, Laurence A. J., et al.
Created Date
2018

Water is a critical resource for future human missions, and is necessary for understanding the evolution of the Solar System. The Moon and Mars have water in various forms and are therefore high-priority targets in the search for accessible extraterrestrial water. Complementary remote sensing analyses coupled with laboratory and field studies are necessary to provide a scientific context for future lunar and Mars exploration. In this thesis, I use multiple techniques to investigate the presence of water-ice at the lunar poles and the properties of martian chloride minerals, whose evolution is intricately linked with liquid water. Permanently shadowed regions (PSRs) …

Contributors
Mitchell, Julie Leeanne, Christensen, Philip R, Bell III, James F, et al.
Created Date
2017

ABSTRACT The Spirit landing site in Gusev Crater has been imaged by the Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment (HiRISE) camera more than thirty times since 2006. The breadth of this image set allowed a study of changes to surface features, covering four Mars years. Small fields of bedforms comprised of dark material, and dark dust devil tracks are among the features revealed in the images. The bedforms are constrained within craters on the plains, and unconstrained in depressions less than 200m wide within the topography of the Columbia Hills, a ~120m-high structure in center of Gusev. Dust …

Contributors
Pendleton-Hoffer, Mary C., Christensen, Philip, Whipple, Kelin, et al.
Created Date
2016

On Mars, sedimentary deposits reveal a complex history of water- and wind-related geologic processes. Central mounds – kilometer-scale stacks of sediment located within craters – occur across Mars, but the specific processes responsible for mound formation and subsequent modification are still uncertain. A survey of central mounds within large craters was conducted. Mound locations, mound offsets within their host craters, and relative mound heights were used to address various mound formation hypotheses. The results suggest that mound sediments once filled their host craters and were later eroded into the features observed today. Mounds offsets from the center of their host …

Contributors
Bennett, Kristen Alicia, Bell, James F, Christensen, Phillip, et al.
Created Date
2016

Amorphous phases are detected over large regions of the Martian surface from orbit and in more localized deposits by rovers on the surface. Amorphous silicates can be primary or secondary in origin, both having formed through very different processes, so the unambiguous identification of these phases is important for understanding the geologic history of Mars. Secondary amorphous silicates are poorly understood and underrepresented in spectral libraries because they lack the long-range structural order that makes their crystalline counterparts identifiable in most analytical techniques. Fortunately, even amorphous materials have some degree of short-range order so that distinctions can be made with …

Contributors
Smith, Rebecca Jean, Christensen, Philip, Shock, Everett, et al.
Created Date
2016

Understanding the structural evolution of planetary surfaces provides key insights to their physical properties and processes. On the Moon, large-scale tectonism was thought to have ended over a billion years ago. However, new Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) high resolution images show the Moon’s surface in unprecedented detail and show many previously unidentified tectonic landforms, forcing a re-assessment of our views of lunar tectonism. I mapped lobate scarps, wrinkle ridges, and graben across Mare Frigoris – selected as a type area due to its excellent imaging conditions, abundance of tectonic landforms, and range of inferred structural …

Contributors
Williams, Nathan Robert, Bell, James, Robinson, Mark, et al.
Created Date
2016