Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Well-established model systems exist in four out of the seven major classes of vertebrates. These include the mouse, chicken, frog and zebrafish. Noticeably missing from this list is a reptilian model organism for comparative studies between the vertebrates and for studies of biological processes unique to reptiles. To help fill in this gap the green anole lizard, Anolis carolinensis, is being adapted as a model organism. Despite the recent release of the complete genomic sequence of the A. carolinensis, the lizard lacks some resources to aid researchers in their studies. Particularly, the lack of transcriptomic resources for lizard has made …

Contributors
Eckalbar, Walter, Kusumi, Kenro, Huentelman, Matthew, et al.
Created Date
2012

Basilisk lizards are often studied for their unique ability to run across the surface of water. Due to the complicated fluid dynamics of this process, the forces applied on the water’s surface cannot be measured using traditional methods. This thesis presents a novel technique of measuring the forces using a fluid dynamic force platform (FDFP), a light, rigid box immersed in water. This platform, along with a motion capture system, can be used to characterize the kinematics and dynamics of a basilisk lizard running on water. This could ultimately lead to robots that can run on water in a similar …

Contributors
Sweeney, Andrew Joseph, Marvi, Hamidreza, Lentink, David, et al.
Created Date
2019