Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Contributor
Subject
Date Range
2011 2019


Surgery as a profession requires significant training to improve both clinical decision making and psychomotor proficiency. In the medical knowledge domain, tools have been developed, validated, and accepted for evaluation of surgeons' competencies. However, assessment of the psychomotor skills still relies on the Halstedian model of apprenticeship, wherein surgeons are observed during residency for judgment of their skills. Although the value of this method of skills assessment cannot be ignored, novel methodologies of objective skills assessment need to be designed, developed, and evaluated that augment the traditional approach. Several sensor-based systems have been developed to measure a user's skill quantitatively, …

Contributors
Islam, Gazi, Li, Baoxin, Liang, Jianming, et al.
Created Date
2013

As the size and scope of valuable datasets has exploded across many industries and fields of research in recent years, an increasingly diverse audience has sought out effective tools for their large-scale data analytics needs. Over this period, machine learning researchers have also been very prolific in designing improved algorithms which are capable of finding the hidden structure within these datasets. As consumers of popular Big Data frameworks have sought to apply and benefit from these improved learning algorithms, the problems encountered with the frameworks have motivated a new generation of Big Data tools to address the shortcomings of the …

Contributors
Krouse, Brian Richard, Ye, Jieping, Liu, Huan, et al.
Created Date
2014

Machine learning models convert raw data in the form of video, images, audio, text, etc. into feature representations that are convenient for computational process- ing. Deep neural networks have proven to be very efficient feature extractors for a variety of machine learning tasks. Generative models based on deep neural networks introduce constraints on the feature space to learn transferable and disentangled rep- resentations. Transferable feature representations help in training machine learning models that are robust across different distributions of data. For example, with the application of transferable features in domain adaptation, models trained on a source distribution can be applied …

Contributors
Eusebio, Jose Miguel Ang, Panchanathan, Sethuraman, Davulcu, Hasan, et al.
Created Date
2018

Alzheimer's Disease (AD) is the most common form of dementia observed in elderly patients and has significant social-economic impact. There are many initiatives which aim to capture leading causes of AD. Several genetic, imaging, and biochemical markers are being explored to monitor progression of AD and explore treatment and detection options. The primary focus of this thesis is to identify key biomarkers to understand the pathogenesis and prognosis of Alzheimer's Disease. Feature selection is the process of finding a subset of relevant features to develop efficient and robust learning models. It is an active research topic in diverse areas such …

Contributors
Dubey, Rashmi, Ye, Jieping, Wang, Yalin, et al.
Created Date
2012

Learning from high dimensional biomedical data attracts lots of attention recently. High dimensional biomedical data often suffer from the curse of dimensionality and have imbalanced class distributions. Both of these features of biomedical data, high dimensionality and imbalanced class distributions, are challenging for traditional machine learning methods and may affect the model performance. In this thesis, I focus on developing learning methods for the high-dimensional imbalanced biomedical data. In the first part, a sparse canonical correlation analysis (CCA) method is presented. The penalty terms is used to control the sparsity of the projection matrices of CCA. The sparse CCA method …

Contributors
Yang, Tao, Ye, Jieping, Wang, Yalin, et al.
Created Date
2013

The recent technological advances enable the collection of various complex, heterogeneous and high-dimensional data in biomedical domains. The increasing availability of the high-dimensional biomedical data creates the needs of new machine learning models for effective data analysis and knowledge discovery. This dissertation introduces several unsupervised and supervised methods to help understand the data, discover the patterns and improve the decision making. All the proposed methods can generalize to other industrial fields. The first topic of this dissertation focuses on the data clustering. Data clustering is often the first step for analyzing a dataset without the label information. Clustering high-dimensional data …

Contributors
Lin, Sangdi, Runger, George C, Kocher, Jean-Pierre A, et al.
Created Date
2018

Users often join an online social networking (OSN) site, like Facebook, to remain social, by either staying connected with friends or expanding social networks. On an OSN site, users generally share variety of personal information which is often expected to be visible to their friends, but sometimes vulnerable to unwarranted access from others. The recent study suggests that many personal attributes, including religious and political affiliations, sexual orientation, relationship status, age, and gender, are predictable using users' personal data from an OSN site. The majority of users want to remain socially active, and protect their personal data at the same …

Contributors
Gundecha, Pritam Sureshlal, Liu, Huan, Ahn, Gail-Joon, et al.
Created Date
2015

Machine learning methodologies are widely used in almost all aspects of software engineering. An effective machine learning model requires large amounts of data to achieve high accuracy. The data used for classification is mostly labeled, which is difficult to obtain. The dataset requires both high costs and effort to accurately label the data into different classes. With abundance of data, it becomes necessary that all the data should be labeled for its proper utilization and this work focuses on reducing the labeling effort for large dataset. The thesis presents a comparison of different classifiers performance to test if small set …

Contributors
Batra, Salil, Femiani, John, Amresh, Ashish, et al.
Created Date
2017

Multi-task learning (MTL) aims to improve the generalization performance (of the resulting classifiers) by learning multiple related tasks simultaneously. Specifically, MTL exploits the intrinsic task relatedness, based on which the informative domain knowledge from each task can be shared across multiple tasks and thus facilitate the individual task learning. It is particularly desirable to share the domain knowledge (among the tasks) when there are a number of related tasks but only limited training data is available for each task. Modeling the relationship of multiple tasks is critical to the generalization performance of the MTL algorithms. In this dissertation, I propose …

Contributors
Chen, Jianhui, Ye, Jieping, Kumar, Sudhir, et al.
Created Date
2011

Ensemble learning methods like bagging, boosting, adaptive boosting, stacking have traditionally shown promising results in improving the predictive accuracy in classification. These techniques have recently been widely used in various domains and applications owing to the improvements in computational efficiency and distributed computing advances. However, with the advent of wide variety of applications of machine learning techniques to class imbalance problems, further focus is needed to evaluate, improve and optimize other performance measures such as sensitivity (true positive rate) and specificity (true negative rate) in classification. This thesis demonstrates a novel approach to evaluate and optimize the performance measures (specifically …

Contributors
Bahl, Neeraj Dharampal, Bansal, Ajay, Amresh, Ashish, et al.
Created Date
2017