Skip to main content

ASU Electronic Theses and Dissertations

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at

Reasoning about the activities of cyber threat actors is critical to defend against cyber attacks. However, this task is difficult for a variety of reasons. In simple terms, it is difficult to determine who the attacker is, what the desired goals are of the attacker, and how they will carry out their attacks. These three questions essentially entail understanding the attacker’s use of deception, the capabilities available, and the intent of launching the attack. These three issues are highly inter-related. If an adversary can hide their intent, they can better deceive a defender. If an adversary’s capabilities are not well …

Nunes, Eric, Shakarian, Paulo, Ahn, Gail-Joon, et al.
Created Date

A story is defined as "an actor(s) taking action(s) that culminates in a resolution(s)''. I present novel sets of features to facilitate story detection among text via supervised classification and further reveal different forms within stories via unsupervised clustering. First, I investigate the utility of a new set of semantic features compared to standard keyword features combined with statistical features, such as density of part-of-speech (POS) tags and named entities, to develop a story classifier. The proposed semantic features are based on <Subject, Verb, Object> triplets that can be extracted using a shallow parser. Experimental results show that a model …

Ceran, Saadet Betul, Davulcu, Hasan, Corman, Steven R, et al.
Created Date