Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


As a promising solution to the problem of acquiring and storing large amounts of image and video data, spatial-multiplexing camera architectures have received lot of attention in the recent past. Such architectures have the attractive feature of combining a two-step process of acquisition and compression of pixel measurements in a conventional camera, into a single step. A popular variant is the single-pixel camera that obtains measurements of the scene using a pseudo-random measurement matrix. Advances in compressive sensing (CS) theory in the past decade have supplied the tools that, in theory, allow near-perfect reconstruction of an image from these measurements …

Contributors
Lohit, Suhas Anand, Turaga, Pavan, Spanias, Andreas, et al.
Created Date
2015

Image understanding has been playing an increasingly crucial role in vision applications. Sparse models form an important component in image understanding, since the statistics of natural images reveal the presence of sparse structure. Sparse methods lead to parsimonious models, in addition to being efficient for large scale learning. In sparse modeling, data is represented as a sparse linear combination of atoms from a "dictionary" matrix. This dissertation focuses on understanding different aspects of sparse learning, thereby enhancing the use of sparse methods by incorporating tools from machine learning. With the growing need to adapt models for large scale data, it …

Contributors
Jayaraman Thiagarajan, Jayaraman, Spanias, Andreas, Frakes, David, et al.
Created Date
2013

The tradition of building musical robots and automata is thousands of years old. Despite this rich history, even today musical robots do not play with as much nuance and subtlety as human musicians. In particular, most instruments allow the player to manipulate timbre while playing; if a violinist is told to sustain an E, they will select which string to play it on, how much bow pressure and velocity to use, whether to use the entire bow or only the portion near the tip or the frog, how close to the bridge or fingerboard to contact the string, whether or …

Contributors
Krzyzaniak, Michael Joseph, Coleman, Grisha, Turaga, Pavan, et al.
Created Date
2016

The performance of most of the visual computing tasks depends on the quality of the features extracted from the raw data. Insightful feature representation increases the performance of many learning algorithms by exposing the underlying explanatory factors of the output for the unobserved input. A good representation should also handle anomalies in the data such as missing samples and noisy input caused by the undesired, external factors of variation. It should also reduce the data redundancy. Over the years, many feature extraction processes have been invented to produce good representations of raw images and videos. The feature extraction processes can …

Contributors
Chandakkar, Parag Shridhar, Li, Baoxin, Yang, Yezhou, et al.
Created Date
2017