Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Subject
Date Range
2011 2019


Reinforcement learning (RL) is a powerful methodology for teaching autonomous agents complex behaviors and skills. A critical component in most RL algorithms is the reward function -- a mathematical function that provides numerical estimates for desirable and undesirable states. Typically, the reward function must be hand-designed by a human expert and, as a result, the scope of a robot's autonomy and ability to safely explore and learn in new and unforeseen environments is constrained by the specifics of the designed reward function. In this thesis, I design and implement a stateful collision anticipation model with powerful predictive capability based upon …

Contributors
Richardson, Trevor W, Ben Amor, Heni, Yang, Yezhou, et al.
Created Date
2018

Online health forums provide a convenient channel for patients, caregivers, and medical professionals to share their experience, support and encourage each other, and form health communities. The fast growing content in health forums provides a large repository for people to seek valuable information. A forum user can issue a keyword query to search health forums regarding to some specific questions, e.g., what treatments are effective for a disease symptom? A medical researcher can discover medical knowledge in a timely and large-scale fashion by automatically aggregating the latest evidences emerging in health forums. This dissertation studies how to effectively discover information …

Contributors
Liu, Yunzhong, Chen, Yi, Liu, Huan, et al.
Created Date
2016

This research start utilizing an efficient sparse inverse covariance matrix (precision matrix) estimation technique to identify a set of highly correlated discriminative perspectives between radical and counter-radical groups. A ranking system has been developed that utilizes ranked perspectives to map Islamic organizations on a set of socio-cultural, political and behavioral scales based on their web site corpus. Simultaneously, a gold standard ranking of these organizations was created through domain experts and compute expert-to-expert agreements and present experimental results comparing the performance of the QUIC based scaling system to another baseline method for organizations. The QUIC based algorithm not only outperforms …

Contributors
Kim, Nyunsu, Davulcu, Hasan, Sen, Arunabha, et al.
Created Date
2018

Due to large data resources generated by online educational applications, Educational Data Mining (EDM) has improved learning effects in different ways: Students Visualization, Recommendations for students, Students Modeling, Grouping Students, etc. A lot of programming assignments have the features like automating submissions, examining the test cases to verify the correctness, but limited studies compared different statistical techniques with latest frameworks, and interpreted models in a unified approach. In this thesis, several data mining algorithms have been applied to analyze students’ code assignment submission data from a real classroom study. The goal of this work is to explore and predict students’ …

Contributors
Tian, Wenbo, Hsiao, Ihan, Bazzi, Rida, et al.
Created Date
2019

Reasoning about the activities of cyber threat actors is critical to defend against cyber attacks. However, this task is difficult for a variety of reasons. In simple terms, it is difficult to determine who the attacker is, what the desired goals are of the attacker, and how they will carry out their attacks. These three questions essentially entail understanding the attacker’s use of deception, the capabilities available, and the intent of launching the attack. These three issues are highly inter-related. If an adversary can hide their intent, they can better deceive a defender. If an adversary’s capabilities are not well …

Contributors
Nunes, Eric, Shakarian, Paulo, Ahn, Gail-Joon, et al.
Created Date
2018

As a promising solution to the problem of acquiring and storing large amounts of image and video data, spatial-multiplexing camera architectures have received lot of attention in the recent past. Such architectures have the attractive feature of combining a two-step process of acquisition and compression of pixel measurements in a conventional camera, into a single step. A popular variant is the single-pixel camera that obtains measurements of the scene using a pseudo-random measurement matrix. Advances in compressive sensing (CS) theory in the past decade have supplied the tools that, in theory, allow near-perfect reconstruction of an image from these measurements …

Contributors
Lohit, Suhas Anand, Turaga, Pavan, Spanias, Andreas, et al.
Created Date
2015

Large-scale $\ell_1$-regularized loss minimization problems arise in high-dimensional applications such as compressed sensing and high-dimensional supervised learning, including classification and regression problems. In many applications, it remains challenging to apply the sparse learning model to large-scale problems that have massive data samples with high-dimensional features. One popular and promising strategy is to scaling up the optimization problem in parallel. Parallel solvers run multiple cores on a shared memory system or a distributed environment to speed up the computation, while the practical usage is limited by the huge dimension in the feature space and synchronization problems. In this dissertation, I carry …

Contributors
Li, Qingyang, Ye, Jieping, Xue, Guoliang, et al.
Created Date
2017

A story is defined as "an actor(s) taking action(s) that culminates in a resolution(s)''. I present novel sets of features to facilitate story detection among text via supervised classification and further reveal different forms within stories via unsupervised clustering. First, I investigate the utility of a new set of semantic features compared to standard keyword features combined with statistical features, such as density of part-of-speech (POS) tags and named entities, to develop a story classifier. The proposed semantic features are based on <Subject, Verb, Object> triplets that can be extracted using a shallow parser. Experimental results show that a model …

Contributors
Ceran, Saadet Betul, Davulcu, Hasan, Corman, Steven R, et al.
Created Date
2016

Machine learning (ML) has played an important role in several modern technological innovations and has become an important tool for researchers in various fields of interest. Besides engineering, ML techniques have started to spread across various departments of study, like health-care, medicine, diagnostics, social science, finance, economics etc. These techniques require data to train the algorithms and model a complex system and make predictions based on that model. Due to development of sophisticated sensors it has become easier to collect large volumes of data which is used to make necessary hypotheses using ML. The promising results obtained using ML have …

Contributors
Dutta, Arindam, Bliss, Daniel W, Berisha, Visar, et al.
Created Date
2018

Sparse learning is a technique in machine learning for feature selection and dimensionality reduction, to find a sparse set of the most relevant features. In any machine learning problem, there is a considerable amount of irrelevant information, and separating relevant information from the irrelevant information has been a topic of focus. In supervised learning like regression, the data consists of many features and only a subset of the features may be responsible for the result. Also, the features might require special structural requirements, which introduces additional complexity for feature selection. The sparse learning package, provides a set of algorithms for …

Contributors
Thulasiram, Ramesh L., Ye, Jieping, Xue, Guoliang, et al.
Created Date
2011