Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Language
  • English
Subject
Date Range
2011 2020


Malicious hackers utilize the World Wide Web to share knowledge. Previous work has demonstrated that information mined from online hacking communities can be used as precursors to cyber-attacks. In a threatening scenario, where security alert systems are facing high false positive rates, understanding the people behind cyber incidents can help reduce the risk of attacks. However, the rapidly evolving nature of those communities leads to limitations still largely unexplored, such as: who are the skilled and influential individuals forming those groups, how they self-organize along the lines of technical expertise, how ideas propagate within them, and which internal patterns can …

Contributors
Santana Marin, Ericsson, Shakarian, Paulo, Doupé, Adam, et al.
Created Date
2020

Languages, specially gestural and sign languages, are best learned in immersive environments with rich feedback. Computer-Aided Language Learning (CALL) solu- tions for spoken languages have successfully incorporated some feedback mechanisms, but no such solution exists for signed languages. Computer Aided Sign Language Learning (CASLL) is a recent and promising field of research which is made feasible by advances in Computer Vision and Sign Language Recognition(SLR). Leveraging existing SLR systems for feedback based learning is not feasible because their decision processes are not human interpretable and do not facilitate conceptual feedback to learners. Thus, fundamental research is needed towards designing systems …

Contributors
Paudyal, Prajwal, Gupta, Sandeep, Banerjee, Ayan, et al.
Created Date
2020

Acoustic emission (AE) signals have been widely employed for tracking material properties and structural characteristics. In this study, the aim is to analyze the AE signals gathered during a scanning probe lithography process to classify the known microstructure types and discover unknown surface microstructures/anomalies. To achieve this, a Hidden Markov Model is developed to consider the temporal dependency of the high-resolution AE data. Furthermore, the posterior classification probability and the negative likelihood score for microstructure classification and discovery are computed. Subsequently, a diagnostic procedure to identify the dominant AE frequencies that were used to track the microstructural characteristics is presented. …

Contributors
Sun, Huifeng, Yan, Hao, Fricks, John, et al.
Created Date
2020

Humans have a great ability to recognize objects in different environments irrespective of their variations. However, the same does not apply to machine learning models which are unable to generalize to images of objects from different domains. The generalization of these models to new data is constrained by the domain gap. Many factors such as image background, image resolution, color, camera perspective and variations in the objects are responsible for the domain gap between the training data (source domain) and testing data (target domain). Domain adaptation algorithms aim to overcome the domain gap between the source and target domains and …

Contributors
Nagabandi, Bhadrinath, Panchanathan, Sethuraman, Venkateswara, Hemanth, et al.
Created Date
2020

Traumatic injuries are the leading cause of death in children under 18, with head trauma being the leading cause of death in children below 5. A large but unknown number of traumatic injuries are non-accidental, i.e. inflicted. The lack of sensitivity and specificity required to diagnose Abusive Head Trauma (AHT) from radiological studies results in putting the children at risk of re-injury and death. Modern Deep Learning techniques can be utilized to detect Abusive Head Trauma using Computer Tomography (CT) scans. Training models using these techniques are only a part of building AI-driven Computer-Aided Diagnostic systems. There are challenges in …

Contributors
Vikram, Aditya, Sanchez, Javier Gonzalez, Gaffar, Ashraf, et al.
Created Date
2020

Hyperspectral unmixing is an important remote sensing task with applications including material identification and analysis. Characteristic spectral features make many pure materials identifiable from their visible-to-infrared spectra, but quantifying their presence within a mixture is a challenging task due to nonlinearities and factors of variation. In this thesis, physics-based approaches are incorporated into an end-to-end spectral unmixing algorithm via differentiable programming. First, sparse regularization and constraints are implemented by adding differentiable penalty terms to a cost function to avoid unrealistic predictions. Secondly, a physics-based dispersion model is introduced to simulate realistic spectral variation, and an efficient method to fit the …

Contributors
Janiczek, John, Jayasuriya, Suren, Dasarathy, Gautam, et al.
Created Date
2020

In the last decade deep learning based models have revolutionized machine learning and computer vision applications. However, these models are data-hungry and training them is a time-consuming process. In addition, when deep neural networks are updated to augment their prediction space with new data, they run into the problem of catastrophic forgetting, where the model forgets previously learned knowledge as it overfits to the newly available data. Incremental learning algorithms enable deep neural networks to prevent catastrophic forgetting by retaining knowledge of previously observed data while also learning from newly available data. This thesis presents three models for incremental learning; …

Contributors
Patil, Rishabh, Venkateswara, Hemanth, Panchanathan, Sethuraman, et al.
Created Date
2020

Humans have an excellent ability to analyze and process information from multiple domains. They also possess the ability to apply the same decision-making process when the situation is familiar with their previous experience. Inspired by human's ability to remember past experiences and apply the same when a similar situation occurs, the research community has attempted to augment memory with Neural Network to store the previously learned information. Together with this, the community has also developed mechanisms to perform domain-specific weight switching to handle multiple domains using a single model. Notably, the two research fields work independently, and the goal of …

Contributors
Patel, Deep Chittranjan, Ben Amor, Hani, Banerjee, Ayan, et al.
Created Date
2020

Humans perceive the environment using multiple modalities like vision, speech (language), touch, taste, and smell. The knowledge obtained from one modality usually complements the other. Learning through several modalities helps in constructing an accurate model of the environment. Most of the current vision and language models are modality-specific and, in many cases, extensively use deep-learning based attention mechanisms for learning powerful representations. This work discusses the role of attention in associating vision and language for generating shared representation. Language Image Transformer (LIT) is proposed for learning multi-modal representations of the environment. It uses a training objective based on Contrastive Predictive …

Contributors
Ramakrishnan, Raghavendran, Panchanathan, Sethuraman, Venkateswara, Hemanth Kumar, et al.
Created Date
2020

The recent proliferation of online platforms has not only revolutionized the way people communicate and acquire information but has also led to propagation of malicious information (e.g., online human trafficking, spread of misinformation, etc.). Propagation of such information occurs at unprecedented scale that could ultimately pose imminent societal-significant threats to the public. To better understand the behavior and impact of the malicious actors and counter their activity, social media authorities need to deploy certain capabilities to reduce their threats. Due to the large volume of this data and limited manpower, the burden usually falls to automatic approaches to identify these …

Contributors
Alvari, Hamidreza, Shakarian, Paulo, Davulcu, Hasan, et al.
Created Date
2020

The pervasive use of the Web has connected billions of people all around the globe and enabled them to obtain information at their fingertips. This results in tremendous amounts of user-generated data which makes users traceable and vulnerable to privacy leakage attacks. In general, there are two types of privacy leakage attacks for user-generated data, i.e., identity disclosure and private-attribute disclosure attacks. These attacks put users at potential risks ranging from persecution by governments to targeted frauds. Therefore, it is necessary for users to be able to safeguard their privacy without leaving their unnecessary traces of online activities. However, privacy …

Contributors
Beigi, Ghazaleh, Liu, Huan, Kambhampati, Subbarao, et al.
Created Date
2020

Unstructured texts containing biomedical information from sources such as electronic health records, scientific literature, discussion forums, and social media offer an opportunity to extract information for a wide range of applications in biomedical informatics. Building scalable and efficient pipelines for natural language processing and extraction of biomedical information plays an important role in the implementation and adoption of applications in areas such as public health. Advancements in machine learning and deep learning techniques have enabled rapid development of such pipelines. This dissertation presents entity extraction pipelines for two public health applications: virus phylogeography and pharmacovigilance. For virus phylogeography, geographical locations …

Contributors
Magge, Arjun, Scotch, Matthew, Gonzalez-Hernandez, Graciela, et al.
Created Date
2019

Significance of real-world knowledge for Natural Language Understanding(NLU) is well-known for decades. With advancements in technology, challenging tasks like question-answering, text-summarizing, and machine translation are made possible with continuous efforts in the field of Natural Language Processing(NLP). Yet, knowledge integration to answer common sense questions is still a daunting task. Logical reasoning has been a resort for many of the problems in NLP and has achieved considerable results in the field, but it is difficult to resolve the ambiguities in a natural language. Co-reference resolution is one of the problems where ambiguity arises due to the semantics of the sentence. …

Contributors
Prakash, Ashok, Baral, Chitta, Devarakonda, Murthy, et al.
Created Date
2019

Live streaming has risen to significant popularity in the recent past and largely this live streaming is a feature of existing social networks like Facebook, Instagram, and Snapchat. However, there does exist at least one social network entirely devoted to live streaming, and specifically the live streaming of video games, Twitch. This social network is unique for a number of reasons, not least because of its hyper-focus on live content and this uniqueness has challenges for social media researchers. Despite this uniqueness, almost no scientific work has been performed on this public social network. Thus, it is unclear what user …

Contributors
Jones, Isaac, Liu, Huan, Maciejewski, Ross, et al.
Created Date
2019

Millions of users leave digital traces of their political engagements on social media platforms every day. Users form networks of interactions, produce textual content, like and share each others' content. This creates an invaluable opportunity to better understand the political engagements of internet users. In this proposal, I present three algorithmic solutions to three facets of online political networks; namely, detection of communities, antagonisms and the impact of certain types of accounts on political polarization. First, I develop a multi-view community detection algorithm to find politically pure communities. I find that word usage among other content types (i.e. hashtags, URLs) …

Contributors
Ozer, Mert, Davulcu, Hasan, Liu, Huan, et al.
Created Date
2019

The goal of reinforcement learning is to enable systems to autonomously solve tasks in the real world, even in the absence of prior data. To succeed in such situations, reinforcement learning algorithms collect new experience through interactions with the environment to further the learning process. The behaviour is optimized by maximizing a reward function, which assigns high numerical values to desired behaviours. Especially in robotics, such interactions with the environment are expensive in terms of the required execution time, human involvement, and mechanical degradation of the system itself. Therefore, this thesis aims to introduce sample-efficient reinforcement learning methods which are …

Contributors
Luck, Kevin Sebastian, Ben Amor, Hani, Aukes, Daniel, et al.
Created Date
2019

Parents fulfill a pivotal role in early childhood development of social and communication skills. In children with autism, the development of these skills can be delayed. Applied behavioral analysis (ABA) techniques have been created to aid in skill acquisition. Among these, pivotal response treatment (PRT) has been empirically shown to foster improvements. Research into PRT implementation has also shown that parents can be trained to be effective interventionists for their children. The current difficulty in PRT training is how to disseminate training to parents who need it, and how to support and motivate practitioners after training. Evaluation of the parents’ …

Contributors
Copenhaver Heath, Corey D, Panchanathan, Sethuraman, McDaniel, Troy, et al.
Created Date
2019

Endowing machines with the ability to understand digital images is a critical task for a host of high-impact applications, including pathology detection in radiographic imaging, autonomous vehicles, and assistive technology for the visually impaired. Computer vision systems rely on large corpora of annotated data in order to train task-specific visual recognition models. Despite significant advances made over the past decade, the fact remains collecting and annotating the data needed to successfully train a model is a prohibitively expensive endeavor. Moreover, these models are prone to rapid performance degradation when applied to data sampled from a different domain. Recent works in …

Contributors
Dudley, Andrew, Panchanathan, Sethuraman, Venkateswara, Hemanth, et al.
Created Date
2019

Time series forecasting is the prediction of future data after analyzing the past data for temporal trends. This work investigates two fields of time series forecasting in the form of Stock Data Prediction and the Opioid Incident Prediction. In this thesis, the Stock Data Prediction Problem investigates methods which could predict the trends in the NYSE and NASDAQ stock markets for ten different companies, nine of which are part of the Dow Jones Industrial Average (DJIA). A novel deep learning model which uses a Generative Adversarial Network (GAN) is used to predict future data and the results are compared with …

Contributors
Thomas, Kevin, Sen, Arunabha, Davulcu, Hasan, et al.
Created Date
2019

The ubiquity of single camera systems in society has made improving monocular depth estimation a topic of increasing interest in the broader computer vision community. Inspired by recent work in sparse-to-dense depth estimation, this thesis focuses on sparse patterns generated from feature detection based algorithms as opposed to regular grid sparse patterns used by previous work. This work focuses on using these feature-based sparse patterns to generate additional depth information by interpolating regions between clusters of samples that are in close proximity to each other. These interpolated sparse depths are used to enforce additional constraints on the network’s predictions. In …

Contributors
Rai, Anshul, Yang, Yezhou, Zhang, Wenlong, et al.
Created Date
2019