Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.




In healthcare facilities, health information systems (HISs) are used to serve different purposes. The radiology department adopts multiple HISs in managing their operations and patient care. In general, the HISs that touch radiology fall into two categories: tracking HISs and archive HISs. Electronic Health Records (EHR) is a typical tracking HIS, which tracks the care each patient receives at multiple encounters and facilities. Archive HISs are typically specialized databases to store large-size data collected as part of the patient care. A typical example of an archive HIS is the Picture Archive and Communication System (PACS), which provides economical storage and …

Contributors
Wang, Kun, Li, Jing, Wu, Teresa, et al.
Created Date
2018

Social media is becoming increasingly popular as a platform for sharing personal health-related information. This information can be utilized for public health monitoring tasks such as pharmacovigilance via the use of Natural Language Processing (NLP) techniques. One of the critical steps in information extraction pipelines is Named Entity Recognition (NER), where the mentions of entities such as diseases are located in text and their entity type are identified. However, the language in social media is highly informal, and user-expressed health-related concepts are often non-technical, descriptive, and challenging to extract. There has been limited progress in addressing these challenges, and advanced …

Contributors
Nikfarjam, Azadeh, Gonzalez, Graciela, Greenes, Robert, et al.
Created Date
2016

Machine learning models convert raw data in the form of video, images, audio, text, etc. into feature representations that are convenient for computational process- ing. Deep neural networks have proven to be very efficient feature extractors for a variety of machine learning tasks. Generative models based on deep neural networks introduce constraints on the feature space to learn transferable and disentangled rep- resentations. Transferable feature representations help in training machine learning models that are robust across different distributions of data. For example, with the application of transferable features in domain adaptation, models trained on a source distribution can be applied …

Contributors
Eusebio, Jose Miguel Ang, Panchanathan, Sethuraman, Davulcu, Hasan, et al.
Created Date
2018

The recent technological advances enable the collection of various complex, heterogeneous and high-dimensional data in biomedical domains. The increasing availability of the high-dimensional biomedical data creates the needs of new machine learning models for effective data analysis and knowledge discovery. This dissertation introduces several unsupervised and supervised methods to help understand the data, discover the patterns and improve the decision making. All the proposed methods can generalize to other industrial fields. The first topic of this dissertation focuses on the data clustering. Data clustering is often the first step for analyzing a dataset without the label information. Clustering high-dimensional data …

Contributors
Lin, Sangdi, Runger, George C, Kocher, Jean-Pierre A, et al.
Created Date
2018

Computer vision technology automatically extracts high level, meaningful information from visual data such as images or videos, and the object recognition and detection algorithms are essential in most computer vision applications. In this dissertation, we focus on developing algorithms used for real life computer vision applications, presenting innovative algorithms for object segmentation and feature extraction for objects and actions recognition in video data, and sparse feature selection algorithms for medical image analysis, as well as automated feature extraction using convolutional neural network for blood cancer grading. To detect and classify objects in video, the objects have to be separated from …

Contributors
Cao, Jun, Li, Baoxin, Liu, Huan, et al.
Created Date
2018

The performance of most of the visual computing tasks depends on the quality of the features extracted from the raw data. Insightful feature representation increases the performance of many learning algorithms by exposing the underlying explanatory factors of the output for the unobserved input. A good representation should also handle anomalies in the data such as missing samples and noisy input caused by the undesired, external factors of variation. It should also reduce the data redundancy. Over the years, many feature extraction processes have been invented to produce good representations of raw images and videos. The feature extraction processes can …

Contributors
Chandakkar, Parag Shridhar, Li, Baoxin, Yang, Yezhou, et al.
Created Date
2017