Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Image understanding has been playing an increasingly crucial role in vision applications. Sparse models form an important component in image understanding, since the statistics of natural images reveal the presence of sparse structure. Sparse methods lead to parsimonious models, in addition to being efficient for large scale learning. In sparse modeling, data is represented as a sparse linear combination of atoms from a "dictionary" matrix. This dissertation focuses on understanding different aspects of sparse learning, thereby enhancing the use of sparse methods by incorporating tools from machine learning. With the growing need to adapt models for large scale data, it …

Contributors
Jayaraman Thiagarajan, Jayaraman, Spanias, Andreas, Frakes, David, et al.
Created Date
2013

Imaging genetics is an emerging and promising technique that investigates how genetic variations affect brain development, structure, and function. By exploiting disorder-related neuroimaging phenotypes, this class of studies provides a novel direction to reveal and understand the complex genetic mechanisms. Oftentimes, imaging genetics studies are challenging due to the relatively small number of subjects but extremely high-dimensionality of both imaging data and genomic data. In this dissertation, I carry on my research on imaging genetics with particular focuses on two tasks---building predictive models between neuroimaging data and genomic data, and identifying disorder-related genetic risk factors through image-based biomarkers. To this …

Contributors
Yang, Tao, Ye, Jieping, Xue, Guoliang, et al.
Created Date
2017