Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Subject
Date Range
2010 2019


Graph coloring is about allocating resources that can be shared except where there are certain pairwise conflicts between recipients. The simplest coloring algorithm that attempts to conserve resources is called first fit. Interval graphs are used in models for scheduling (in computer science and operations research) and in biochemistry for one-dimensional molecules such as genetic material. It is not known precisely how much waste in the worst case is due to the first-fit algorithm for coloring interval graphs. However, after decades of research the range is narrow. Kierstead proved that the performance ratio R is at most 40. Pemmaraju, Raman, ...

Contributors
Smith, David A., Kierstead, Henry A., Czygrinow, Andrzej, et al.
Created Date
2010

This study investigated the link between the cognitive clusters from the Woodcock–Johnson III Tests of Cognitive Ability (WJ III COG) and Broad Math, Math Calculation Skills, and Math Reasoning clusters of the Woodcock–Johnson III Tests of Achievement (WJ III ACH) using data collected over seven years by a large elementary school district in the Southwest. The students in this study were all diagnosed with math learning disabilities. Multiple regression analyses were used to predict performance on the Broad Math, Math Calculation Skills, and Math Reasoning clusters from the WJ III ACH. Fluid Reasoning (Gf), Comprehension–Knowledge (Gc), Short–Term Memory (Gsm), and ...

Contributors
Bacal, Emily Beth, Caterino, Linda, Stamm, Jill, et al.
Created Date
2011

Threshold logic has been studied by at least two independent group of researchers. One group of researchers studied threshold logic with the intention of building threshold logic circuits. The earliest research to this end was done in the 1960's. The major work at that time focused on studying mathematical properties of threshold logic as no efficient circuit implementations of threshold logic were available. Recently many post-CMOS (Complimentary Metal Oxide Semiconductor) technologies that implement threshold logic have been proposed along with efficient CMOS implementations. This has renewed the effort to develop efficient threshold logic design automation techniques. This work contributes to ...

Contributors
Linge Gowda, Tejaswi, Vrudhula, Sarma, Shrivastava, Aviral, et al.
Created Date
2012

The Cambrian lattice corresponding to a Coxeter element c of An, denoted Camb(c), is the subposet of An induced by the c-sortable elements, and the m-eralized Cambrian lattice corresponding to c, denoted Cambm(c), is dened as a subposet of the braid group accompanied with the right weak ordering induced by the c-sortable elements under certain conditions. Both of these families generalize the well-studied Tamari lattice Tn rst introduced by D. Tamari in 1962. S. Fishel and L. Nelson enumerated the chains of maximum length of Tamari lattices. In this dissertation, I study the chains of maximum length of the Cambrian ...

Contributors
AL-SULEIMAN, SULTAN, Fishel, Susanna, Childress, Nancy, et al.
Created Date
2017

The Tamari lattices have been intensely studied since they first appeared in Dov Tamari’s thesis around 1952. He defined the n-th Tamari lattice T(n) on bracketings of a set of n+1 objects, with a cover relation based on the associativity rule in one direction. Despite their interesting aspects and the attention they have received, a formula for the number of maximal chains in the Tamari lattices is still unknown. The purpose of this thesis is to convey my results on progress toward the solution of this problem and to discuss future work. A few years ago, Bergeron and Préville-Ratelle generalized ...

Contributors
Nelson, Luke Edwin, Fishel, Susanna, Czygrinow, Andrzej, et al.
Created Date
2016

According to the Centers for Disease Control and Prevention (CDC), type 2 diabetes accounts for 90-95% of diabetes (29.1 million) cases and manifests in 15-30% of prediabetes (86 million) cases, where 9 out of 10 individuals do not know they have prediabetes. Obesity, observed in 56.9% of diabetes cases, arises from the interactions among genetic, biological, environmental, and behavioral factors that are not well understood. Assessing the strength of these links in conjunction with the identification and evaluation of intervention strategies in vulnerable populations is central to the study of chronic diseases. This research addresses three issues that loosely connect ...

Contributors
Murillo, Anarina, Castillo-Chavez, Carlos, Li, Jiaxu, et al.
Created Date
2016

ABSTRACT There is a continuing emphasis in the United States to improve student's mathematical abilities and one approach is to better prepare teachers. This study investigated the effects of using lesson study with preservice secondary mathematics teachers to improve their proficiency at planning and implementing instruction. The participants were students (preservice teachers) in an undergraduate teacher preparation program at a private university who were enrolled in a mathematics methods course for secondary math teachers. This project used lesson study to engage preservice teachers in collaboratively creating lessons, field testing them, using feedback to revise the lessons, and re-teaching the revised ...

Contributors
Mostofo, Jameel (Jim) Richard, Zambo, Ronald, Elliott, Sherman, et al.
Created Date
2013

Recently there has been an increase in the number of people calling for the incorporation of relevant mathematics in the mathematics classroom. Unfortunately, various researchers define the term relevant mathematics differently, establishing several ideas of how relevancy can be incorporated into the classroom. The differences between mathematics education researchers' definitions of relevant and the way they believe relevant math should be implemented in the classroom, leads one to conclude that a similarly varied set of perspectives probably exists between teachers and students as well. The purpose of this exploratory study focuses on how the student and teacher perspectives on relevant ...

Contributors
Redman, Alexandra, Middleton, James, Sloane, Finbarr, et al.
Created Date
2012

In this dissertation I develop a deep theory of temporal planning well-suited to analyzing, understanding, and improving the state of the art implementations (as of 2012). At face-value the work is strictly theoretical; nonetheless its impact is entirely real and practical. The easiest portion of that impact to highlight concerns the notable improvements to the format of the temporal fragment of the International Planning Competitions (IPCs). Particularly: the theory I expound upon here is the primary cause of--and justification for--the altered (i) selection of benchmark problems, and (ii) notion of "winning temporal planner". For higher level motivation: robotics, web service ...

Contributors
Cushing, William Albemarle, Kambhampati, Subbarao, Weld, Daniel S, et al.
Created Date
2012

The purpose of this study was to identify the algebraic reasoning abilities of young students prior to instruction. The goals of the study were to determine the influence of problem, problem type, question, grade level, and gender on: (a) young children’s abilities to predict the number of shapes in near and far positions in a “growing” pattern without assistance; (b) the nature and amount of assistance needed to solve the problems; and (c) reasoning methods employed by children. The 8-problem Growing Patterns and Functions Assessment (GPFA), with an accompanying interview protocol, were developed to respond to these goals. Each problem ...

Contributors
Cavanagh, Mary C., Greenes, Carole E, Buss, Ray, et al.
Created Date
2016