Skip to main content

ASU Electronic Theses and Dissertations

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at

Extremal graph theory results often provide minimum degree conditions which guarantee a copy of one graph exists within another. A perfect $F$-tiling of a graph $G$ is a collection $\mathcal{F}$ of subgraphs of $G$ such that every element of $\mathcal{F}$ is isomorphic to $F$ and such that every vertex in $G$ is in exactly one element of $\mathcal{F}$. Let $C^{3}_{t}$ denote the loose cycle on $t = 2s$ vertices, the $3$-uniform hypergraph obtained by replacing the edges $e = \{u, v\}$ of a graph cycle $C$ on $s$ vertices with edge triples $\{u, x_e, v\}$, where $x_e$ is uniquely assigned ...

Oursler, Roy, Czygrinow, Andrzej, Kierstead, Hal A, et al.
Created Date