Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.




Fluctuations with a power spectral density depending on frequency as $1/f^\alpha$ ($0<\alpha<2$) are found in a wide class of systems. The number of systems exhibiting $1/f$ noise means it has far-reaching practical implications; it also suggests a possibly universal explanation, or at least a set of shared properties. Given this diversity, there are numerous models of $1/f$ noise. In this dissertation, I summarize my research into models based on linking the characteristic times of fluctuations of a quantity to its multiplicity of states. With this condition satisfied, I show that a quantity will undergo $1/f$ fluctuations and exhibit associated properties, …

Contributors
Davis, Bryce, Chamberlin, Ralph V, Mauskopf, Philip, et al.
Created Date
2018

This dissertation research has involved microscopic characterization of magnetic nanostructures using off-axis electron holography and Lorentz microscopy. The nanostructures investigated have included Co nanoparticles (NPs), Au/Fe/GaAs shell/core nanowires (NWs), carbon spirals with magnetic cores, magnetic nanopillars, Ni-Zn-Co spinel ferrite and CoFe/Pd multilayers. The studies have confirmed the capability of holography to describe the behavior of magnetic structures at the nanoscale. The phase changes caused by the fringing fields of chains consisting of Co NPs were measured and calculated. The difference between chains with different numbers of Co NPs followed the trend indicated by calculations. Holography studies of Au/Fe/GaAs NWs grown …

Contributors
Zhang, Desai, McCartney, Martha R, Smith, David J, et al.
Created Date
2015

III-nitride alloys are wide band gap semiconductors with a broad range of applications in optoelectronic devices such as light emitting diodes and laser diodes. Indium gallium nitride light emitting diodes have been successfully produced over the past decade. But the progress of green emission light emitting devices has been limited by the incorporation of indium in the alloy, mainly due to phase separation. This difficulty could be addressed by studying the growth and thermodynamics of these alloys. Knowledge of thermodynamic phase stabilities and of pressure - temperature - composition phase diagrams is important for an understanding of the boundary conditions …

Contributors
Hill, Arlinda, Ponce, Fernando A, Chamberlin, Ralph V, et al.
Created Date
2011

In this work, a new method, "Nanobonding" [1,2] is conceived and researched to bond Si-based surfaces, via nucleation and growth of a 2 D silicon oxide SiOxHx interphase connecting the surfaces at the nanoscale across macroscopic domains. Nanobonding cross-bridges two smooth surfaces put into mechanical contact in an O2/H2O mixed ambient below T <200 °C via arrays of SiOxHx molecules connecting into a continuous macroscopic bonding interphase. Nano-scale surface planarization via wet chemical processing and new spin technology are compared via Tapping Mode Atomic Force Microscopy (TMAFM) , before and after nano-bonding. Nanobonding uses precursor phases, 2D nano-films of beta-cristobalite …

Contributors
Whaley, Shawn David, Culbertson, Robert J, Herbots, Nicole, et al.
Created Date
2011

The origin of Life on Earth is the greatest unsolved mystery in the history of science. In spite of progress in almost every scientific endeavor, we still have no clear theory, model, or framework to understand the processes that led to the emergence of life on Earth. Understanding such a processes would provide key insights into astrobiology, planetary science, geochemistry, evolutionary biology, physics, and philosophy. To date, most research on the origin of life has focused on characterizing and synthesizing the molecular building blocks of living systems. This bottom-up approach assumes that living systems are characterized by their component parts, …

Contributors
Mathis, Nicholas, Walker, Sara I, Davies, Paul CW, et al.
Created Date
2018

What makes living systems different than non-living ones? Unfortunately this question is impossible to answer, at least currently. Instead, we must face computationally tangible questions based on our current understanding of physics, computation, information, and biology. Yet we have few insights into how living systems might quantifiably differ from their non-living counterparts, as in a mathematical foundation to explain away our observations of biological evolution, emergence, innovation, and organization. The development of a theory of living systems, if at all possible, demands a mathematical understanding of how data generated by complex biological systems changes over time. In addition, this theory …

Contributors
Adams, Alyssa Michelle, Walker, Sara I, Davies, Paul CW, et al.
Created Date
2017