Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Date Range
2011 2018


Cubic boron nitride (c-BN) has potential for electronic applications as an electron emitter and serving as a base material for diodes, transistors, etc. However, there has been limited research on c-BN reported, and many of the electronic properties of c-BN and c-BN interfaces have yet to be reported. This dissertation focused on probing thin film c-BN deposited via plasma enhanced chemical vapor deposition (PECVD) with in situ photoelectron spectroscopy (PES). PES measurements were used to characterize the electronic properties of c-BN films and interfaces with vacuum and diamond. First, the interface between c-BN and vacuum were characterized with ultraviolet PES …

Contributors
Shammas, Joseph, Nemanich, Robert J, Ponce, Fernando, et al.
Created Date
2016

Multifunctional oxide thin-films grown on silicon and several oxide substrates have been characterized using High Resolution (Scanning) Transmission Electron Microscopy (HRTEM), Energy-Dispersive X-ray Spectroscopy (EDX), and Electron Energy-Loss Spectroscopy (EELS). Oxide thin films grown on SrTiO3/Si pseudo-substrate showed the presence of amorphised SrTiO3 (STO) at the STO/Si interface. Oxide/oxide interfaces were observed to be atomically clean with very few defects. Al-doped SrTiO3 thin films grown on Si were of high crystalline quality. The Ti/O ratio estimated from EELS line scans revealed that substitution of Ti by Al created associated O vacancies. The strength of the crystal field in STO was …

Contributors
Dhamdhere, Ajit R., SMITH, DAVID J, McCartney, Martha R., et al.
Created Date
2015

This research has studied remote plasma enhanced atomic layer deposited Ga2O3 thin films with gallium acetylacetonate (Ga(acac)3) as Ga precursor and remote inductively coupled oxygen plasma as oxidizer. The Ga2O3 thin films were mainly considered as passivation layers on GaN. Growth conditions including Ga(acac)3 precursor pulse time, O2 plasma pulse time, N2 purge time and deposition temperature were investigated and optimized on phosphorus doped Si (100) wafer to achieve a saturated self-limiting growth. A temperature growth window was observed between 150 ℃ and 320 ℃. Ga precursor molecules can saturate on the substrate surface in 0.6 s in one cycle …

Contributors
Hao, Mei, Nemanich, Robert J., Ponce, Fernando, et al.
Created Date
2018

In this thesis a new method based on the Tight-Binding Linear Muffin Tin Orbital (TB-LMTO) formalism and the Quasiparticle Self-consistent GW (QSGW) approximation is proposed. The method is capable of generating accurate electronic bands structure of large supercells necessary to model alloys structures. The strategy consist in building simple and small hamiltonian from linear Muffin-tin-orbitals (LMTO). Parameters in this hamiltonian are then used to fit the difference in QSGW self-energies and LDA exchange-correlation potentials. The parameter are assumed to transfer to new environments --- a procedure we check carefully by comparing our predicted band to QSGW bands for small supercells. …

Contributors
Azemtsa Donfack, Hermann Azemtsa, Van Schilfgaarde, Mark, Dow, John D, et al.
Created Date
2011

The electronic states of semiconductor interfaces have significant importance for semiconductor device performance, especially due to the continuing miniaturization of device technology. The application of ultra high vacuum (UHV) enables the preparation and characterization of fresh and cleaned interfaces. In a UHV environment, photoemission spectroscopy (PES) provides a non-destructive method to measure the electronic band structure, which is a crucial component of interface properties. In this dissertation, three semiconductor interfaces were studies to understand different effects on electronic states. The interfaces studied were freshly grown or pre-treated under UHV. Then in-situ PES measurements, including x-ray photoemission spectroscopy (XPS) and ultra-violet …

Contributors
Wang, Xingye, Nemanich, Robert J, Chan, Candace, et al.
Created Date
2018

In this dissertation, the interface chemistry and electronic structure of plasma-enhanced atomic layer deposited (PEALD) dielectrics on GaN are investigated with x-ray and ultraviolet photoemission spectroscopy (XPS and UPS). Three interrelated issues are discussed in this study: (1) PEALD dielectric growth process optimization, (2) interface electronic structure of comparative PEALD dielectrics on GaN, and (3) interface electronic structure of PEALD dielectrics on Ga- and N-face GaN. The first study involved an in-depth case study of PEALD Al2O3 growth using dimethylaluminum isopropoxide, with a special focus on oxygen plasma effects. Saturated and self-limiting growth of Al2O3 films were obtained with an …

Contributors
Yang, Jialing, Nemanich, Robert J, Chen, Tingyong, et al.
Created Date
2014

Ge1-ySny alloys represent a new class of photonic materials for integrated optoelectronics on Si. In this work, the electrical and optical properties of Ge1-ySny alloy films grown on Si, with concentrations in the range 0 ≤ y ≤ 0.04, are studied via a variety of methods. The first microelectronic devices from GeSn films were fabricated using newly developed CMOS-compatible protocols, and the devices were characterized with respect to their electrical properties and optical response. The detectors were found to have a detection range that extends into the near-IR, and the detection edge is found to shift to longer wavelengths with …

Contributors
Mathews, Jay, Menéndez, José, Kouvetakis, John, et al.
Created Date
2011

In this dissertation, remote plasma interactions with the surfaces of low-k interlayer dielectric (ILD), Cu and Cu adhesion layers are investigated. The first part of the study focuses on the simultaneous plasma treatment of ILD and chemical mechanical polishing (CMP) Cu surfaces using N2/H2 plasma processes. H atoms and radicals in the plasma react with the carbon groups leading to carbon removal for the ILD films. Results indicate that an N2 plasma forms an amide-like layer on the surface which apparently leads to reduced carbon abstraction from an H2 plasma process. In addition, FTIR spectra indicate the formation of hydroxyl …

Contributors
Liu, Xin, Nemanich, Robert, Chamberlin, Ralph, et al.
Created Date
2012

GaN and AlGaN have shown great potential in next-generation power and RF electronics. However, these devices are limited by reliability issues such as leakage current and current collapse that result from surface and interface states on GaN and AlGaN. This dissertation, therefore, examined these electronic states, focusing on the following two points: First, the surface electronic state configuration was examined with regards to the polarization bound 1013 charges/cm2 that increases with aluminum content. This large bound charge requires compensation either externally by surface states or internally by the space charge regions as relates to band bending. In this work, band …

Contributors
Eller, Brianna, Nemanich, Robert J, Chowdhury, Srabanti, et al.
Created Date
2015

The chemical sensitivity and spatial resolution of Raman spectroscopy, combined with the sensitivity of modern systems that can easily detect single atomic layers, have made this technique a preferred choice for the strain characterization of complex systems such as nanoscale complementary metal-oxide-semiconductor - CMOS - devices. A disadvantage of Raman spectroscopy, however, is that the shifts associated with strain are not related to the geometrical deformations in any obvious way, so that careful calibrations are needed to determine the anharmonic coefficients (p, q and r) that relate strain to Raman shifts. A new set of measurements of the Raman shift …

Contributors
Bagchi, Sampriti, Menendez, Jose, Treacy, Michael, et al.
Created Date
2011