Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Gallium Nitride (GaN), being a wide-bandgap semiconductor, shows its advantage over the conventional semiconductors like Silicon and Gallium Arsenide for high temperature applications, especially in the temperature range from 300°C to 600°C. Development of stable ohmic contacts to GaN with low contact resistivity has been identified as a prerequisite to the success of GaN high temperature electronics. The focus of this work was primarily derived from the requirement of an appropriate metal contacts to work with GaN-based hybrid solar cell operating at high temperature. Alloyed Ti/Al/Ni/Au contact and non-alloyed Al/Au contact were developed to form low-resistivity contacts to n-GaN and …

Contributors
Zhao, Shirong, Chowdhury, Srabanti, Goodnick, Stephen, et al.
Created Date
2016

High electron mobility transistors (HEMTs) based on Group III-nitride heterostructures have been characterized by advanced electron microscopy methods including off-axis electron holography, nanoscale chemical analysis, and electrical measurements, as well as other techniques. The dissertation was organized primarily into three topical areas: (1) characterization of near-gate defects in electrically stressed AlGaN/GaN HEMTs, (2) microstructural and chemical analysis of the gate/buffer interface of AlN/GaN HEMTs, and (3) studies of the impact of laser-liftoff processing on AlGaN/GaN HEMTs. The electrical performance of stressed AlGaN/GaN HEMTs was measured and the devices binned accordingly. Source- and drain-side degraded, undegraded, and unstressed devices were then …

Contributors
Johnson, Michael Ray, Mccartney, Martha R, Smith, David J, et al.
Created Date
2012

ABSTRACT An Ensemble Monte Carlo (EMC) computer code has been developed to simulate, semi-classically, spin-dependent electron transport in quasi two-dimensional (2D) III-V semiconductors. The code accounts for both three-dimensional (3D) and quasi-2D transport, utilizing either 3D or 2D scattering mechanisms, as appropriate. Phonon, alloy, interface roughness, and impurity scattering mechanisms are included, accounting for the Pauli Exclusion Principle via a rejection algorithm. The 2D carrier states are calculated via a self-consistent 1D Schrödinger-3D-Poisson solution in which the charge distribution of the 2D carriers in the quantization direction is taken as the spatial distribution of the squared envelope functions within the …

Contributors
Tierney, Brian David, Goodnick, Stephen, Ferry, David, et al.
Created Date
2011