Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Rapid expansion of dense beds of fine, spherical particles subjected to rapid depressurization is studied in a vertical shock tube. As the particle bed is unloaded, a high-speed video camera captures the dramatic evolution of the particle bed structure. Pressure transducers are used to measure the dynamic pressure changes during the particle bed expansion process. Image processing, signal processing, and Particle Image Velocimetry techniques, are used to examine the relationships between particle size, initial bed height, bed expansion rate, and gas velocities. The gas-particle interface and the particle bed as a whole expand and evolve in stages. First, the bed …

Contributors
Zunino, Heather, Adrian, Ronald J, Clarke, Amanda, et al.
Created Date
2019

The Jovian moon Europa's putative subsurface ocean offers one of the closest astrobiological targets for future exploration. It’s geologically young surface with a wide array of surface features aligned with distinct surface composition suggests past/present geophysical activity with implications for habitability. In this body of work, I propose a hypothesis for material transport from the ocean towards the surface via a convecting ice-shell. Geodynamical modeling is used to perform numerical experiments on a two-phase water-ice system to test the hypotheses. From these models, I conclude that it is possible for trace oceanic chemistry, entrapped into the newly forming ice at …

Contributors
Allu Peddinti, Divya, McNamara, Allen Keith, Garnero, Edward, et al.
Created Date
2017