Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Nanoscale semiconductors with their unique properties and potential applications have been a focus of extensive research in recent years. There are many ways in which semiconductors change the world with computers, cell phones, and solar panels, and nanoscale semiconductors having a promising potential to expand the efficiency, reduce the cost, and improve the flexibility and durability of their design. In this study, theoretical quantum mechanical simulations were performed on several different nanoscale semiconductor materials, including graphene/phosphorene nanoribbons and group III-V nanowires. First principles density functional theory (DFT) was used to study the electronic and structural properties of these nanomaterials in …

Contributors
Copple, Andrew Duane, Peng, Xihong, Chan, Candace, et al.
Created Date
2016