Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.




This work is an investigation into the information provided by the concurrent use of in situ reflection high energy electron diffraction (RHEED) and reflection electron energy loss spectroscopy (REELS). The two analytical methods were employed during growth of metal, semiconductor and superconductor thin films by molecular beam epitaxy (MBE). Surface sensitivity of the REELS spectrometer was found to be less than 1 nm for 20 KeV electrons incident at a 2 degree angle to an atomically flat film surface, agreeing with the standard electron escape depth data when adjusted incident angle. Film surface topography was found to strongly influence the …

Contributors
Strawbridge, Brett William, Newman, Nathan, Chamberlin, Ralph, et al.
Created Date
2012

In this dissertation, the interface chemistry and electronic structure of plasma-enhanced atomic layer deposited (PEALD) dielectrics on GaN are investigated with x-ray and ultraviolet photoemission spectroscopy (XPS and UPS). Three interrelated issues are discussed in this study: (1) PEALD dielectric growth process optimization, (2) interface electronic structure of comparative PEALD dielectrics on GaN, and (3) interface electronic structure of PEALD dielectrics on Ga- and N-face GaN. The first study involved an in-depth case study of PEALD Al2O3 growth using dimethylaluminum isopropoxide, with a special focus on oxygen plasma effects. Saturated and self-limiting growth of Al2O3 films were obtained with an …

Contributors
Yang, Jialing, Nemanich, Robert J, Chen, Tingyong, et al.
Created Date
2014

In this work, the insight provided by our sophisticated Full Band Monte Carlo simulator is used to analyze the behavior of state-of-art devices like GaN High Electron Mobility Transistors and Hot Electron Transistors. Chapter 1 is dedicated to the description of the simulation tool used to obtain the results shown in this work. Moreover, a separate section is dedicated the set up of a procedure to validate to the tunneling algorithm recently implemented in the simulator. Chapter 2 introduces High Electron Mobility Transistors (HEMTs), state-of-art devices characterized by highly non linear transport phenomena that require the use of advanced simulation …

Contributors
Soligo, Riccardo, Saraniti, Marco, Goodnick, Stephen M, et al.
Created Date
2016

Group III-nitride semiconductors have been commercially used in the fabrication of light-emitting diodes and laser diodes, covering the ultraviolet-visible-infrared spectral range and exhibit unique properties suitable for modern optoelectronic applications. InGaN ternary alloys have energy band gaps ranging from 0.7 to 3.4 eV. It has a great potential in the application for high efficient solar cells. AlGaN ternary alloys have energy band gaps ranging from 3.4 to 6.2 eV. These alloys have a great potential in the application of deep ultra violet laser diodes. However, there are still many issues with these materials that remain to be solved. In this …

Contributors
Wei, Yong, Ponce, Fernando, Chizmeshya, Andrew, et al.
Created Date
2014

High electron mobility transistors (HEMTs) based on Group III-nitride heterostructures have been characterized by advanced electron microscopy methods including off-axis electron holography, nanoscale chemical analysis, and electrical measurements, as well as other techniques. The dissertation was organized primarily into three topical areas: (1) characterization of near-gate defects in electrically stressed AlGaN/GaN HEMTs, (2) microstructural and chemical analysis of the gate/buffer interface of AlN/GaN HEMTs, and (3) studies of the impact of laser-liftoff processing on AlGaN/GaN HEMTs. The electrical performance of stressed AlGaN/GaN HEMTs was measured and the devices binned accordingly. Source- and drain-side degraded, undegraded, and unstressed devices were then …

Contributors
Johnson, Michael Ray, Mccartney, Martha R, Smith, David J, et al.
Created Date
2012

Nitride semiconductors have wide applications in electronics and optoelectronics technologies. Understanding the nature of the optical recombination process and its effects on luminescence efficiency is important for the development of novel devices. This dissertation deals with the optical properties of nitride semiconductors, including GaN epitaxial layers and more complex heterostructures. The emission characteristics are examined by cathodoluminescence spectroscopy and imaging, and are correlated with the structural and electrical properties studied by transmission electron microscopy and electron holography. Four major areas are covered in this dissertation, which are described next. The effect of strain on the emission characteristics in wurtzite GaN …

Contributors
Li, Ti, Ponce, Fernando, Culbertson, Robert, et al.
Created Date
2012