Skip to main content

ASU Electronic Theses and Dissertations

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at

With the discovery of the Higgs Boson in 2012, particle physics has decidedly moved beyond the Standard Model into a new epoch. Though the Standard Model particle content is now completely accounted for, there remain many theoretical issues about the structure of the theory in need of resolution. Among these is the hierarchy problem: since the renormalized Higgs mass receives quadratic corrections from a higher cutoff scale, what keeps the Higgs boson light? Many possible solutions to this problem have been advanced, such as supersymmetry, Randall-Sundrum models, or sub-millimeter corrections to gravity. One such solution has been advanced by the …

TerBeek, Russell Henry, Lebed, Richard F, Alarcon, Ricardo, et al.
Created Date

Two ideas that extends on the theory of General Relativity are introduced and then the phenomenology they can offer is explored. The first idea shows how certain types of $f(R)$ gravity allows for traversable wormholes among its vacuum solutions. This is surprising to find in such simple setting as these type of solutions usually requires fairly complex constructions to satisfy the equations of motion of a gravitational theory. The second idea is the matter bounce description of the early universe where a fairly unique feature of the model is identified. Consequences of this feature could allow the paradigm to distinguish …

Duplessis, Francis, Easson, Damien, Vachaspati, Tanmay, et al.
Created Date