Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.




Bayesian Additive Regression Trees (BART) is a non-parametric Bayesian model that often outperforms other popular predictive models in terms of out-of-sample error. This thesis studies a modified version of BART called Accelerated Bayesian Additive Regression Trees (XBART). The study consists of simulation and real data experiments comparing XBART to other leading algorithms, including BART. The results show that XBART maintains BART’s predictive power while reducing its computation time. The thesis also describes the development of a Python package implementing XBART. Dissertation/Thesis

Contributors
Yalov, Saar, Hahn, P. Richard, McCulloch, Robert, et al.
Created Date
2019

This article proposes a new information-based subdata selection (IBOSS) algorithm, Squared Scaled Distance Algorithm (SSDA). It is based on the invariance of the determinant of the information matrix under orthogonal transformations, especially rotations. Extensive simulation results show that the new IBOSS algorithm retains nice asymptotic properties of IBOSS and gives a larger determinant of the subdata information matrix. It has the same order of time complexity as the D-optimal IBOSS algorithm. However, it exploits the advantages of vectorized calculation avoiding for loops and is approximately 6 times as fast as the D-optimal IBOSS algorithm in R. The robustness of SSDA …

Contributors
Zheng, Yi, Stufken, John, Reiser, Mark, et al.
Created Date
2017

In this work, I present a Bayesian inference computational framework for the analysis of widefield microscopy data that addresses three challenges: (1) counting and localizing stationary fluorescent molecules; (2) inferring a spatially-dependent effective fluorescence profile that describes the spatially-varying rate at which fluorescent molecules emit subsequently-detected photons (due to different illumination intensities or different local environments); and (3) inferring the camera gain. My general theoretical framework utilizes the Bayesian nonparametric Gaussian and beta-Bernoulli processes with a Markov chain Monte Carlo sampling scheme, which I further specify and implement for Total Internal Reflection Fluorescence (TIRF) microscopy data, benchmarking the method on …

Contributors
Wallgren, Ross Tod, Presse, Steve, Armbruster, Hans, et al.
Created Date
2019

This dissertation investigates the classification of systemic lupus erythematosus (SLE) in the presence of non-SLE alternatives, while developing novel curve classification methodologies with wide ranging applications. Functional data representations of plasma thermogram measurements and the corresponding derivative curves provide predictors yet to be investigated for SLE identification. Functional nonparametric classifiers form a methodological basis, which is used herein to develop a) the family of ESFuNC segment-wise curve classification algorithms and b) per-pixel ensembles based on logistic regression and fused-LASSO. The proposed methods achieve test set accuracy rates as high as 94.3%, while returning information about regions of the temperature domain …

Contributors
Buscaglia, Robert, Kamarianakis, Yiannis, Armbruster, Dieter, et al.
Created Date
2018

The primary objective in time series analysis is forecasting. Raw data often exhibits nonstationary behavior: trends, seasonal cycles, and heteroskedasticity. After data is transformed to a weakly stationary process, autoregressive moving average (ARMA) models may capture the remaining temporal dynamics to improve forecasting. Estimation of ARMA can be performed through regressing current values on previous realizations and proxy innovations. The classic paradigm fails when dynamics are nonlinear; in this case, parametric, regime-switching specifications model changes in level, ARMA dynamics, and volatility, using a finite number of latent states. If the states can be identified using past endogenous or exogenous information, …

Contributors
Giacomazzo, Mario, Kamarianakis, Yiannis, Reiser, Mark, et al.
Created Date
2018