Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


This article proposes a new information-based subdata selection (IBOSS) algorithm, Squared Scaled Distance Algorithm (SSDA). It is based on the invariance of the determinant of the information matrix under orthogonal transformations, especially rotations. Extensive simulation results show that the new IBOSS algorithm retains nice asymptotic properties of IBOSS and gives a larger determinant of the subdata information matrix. It has the same order of time complexity as the D-optimal IBOSS algorithm. However, it exploits the advantages of vectorized calculation avoiding for loops and is approximately 6 times as fast as the D-optimal IBOSS algorithm in R. The robustness of SSDA …

Contributors
Zheng, Yi, Stufken, John, Reiser, Mark, et al.
Created Date
2017

This dissertation investigates the classification of systemic lupus erythematosus (SLE) in the presence of non-SLE alternatives, while developing novel curve classification methodologies with wide ranging applications. Functional data representations of plasma thermogram measurements and the corresponding derivative curves provide predictors yet to be investigated for SLE identification. Functional nonparametric classifiers form a methodological basis, which is used herein to develop a) the family of ESFuNC segment-wise curve classification algorithms and b) per-pixel ensembles based on logistic regression and fused-LASSO. The proposed methods achieve test set accuracy rates as high as 94.3%, while returning information about regions of the temperature domain …

Contributors
Buscaglia, Robert, Kamarianakis, Yiannis, Armbruster, Dieter, et al.
Created Date
2018

The primary objective in time series analysis is forecasting. Raw data often exhibits nonstationary behavior: trends, seasonal cycles, and heteroskedasticity. After data is transformed to a weakly stationary process, autoregressive moving average (ARMA) models may capture the remaining temporal dynamics to improve forecasting. Estimation of ARMA can be performed through regressing current values on previous realizations and proxy innovations. The classic paradigm fails when dynamics are nonlinear; in this case, parametric, regime-switching specifications model changes in level, ARMA dynamics, and volatility, using a finite number of latent states. If the states can be identified using past endogenous or exogenous information, …

Contributors
Giacomazzo, Mario, Kamarianakis, Yiannis, Reiser, Mark, et al.
Created Date
2018