Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Obtaining high-quality experimental designs to optimize statistical efficiency and data quality is quite challenging for functional magnetic resonance imaging (fMRI). The primary fMRI design issue is on the selection of the best sequence of stimuli based on a statistically meaningful optimality criterion. Some previous studies have provided some guidance and powerful computational tools for obtaining good fMRI designs. However, these results are mainly for basic experimental settings with simple statistical models. In this work, a type of modern fMRI experiments is considered, in which the design matrix of the statistical model depends not only on the selected design, but also …

Contributors
Zhou, Lin, Kao, Ming-hung, Reiser, Mark, et al.
Created Date
2014

In many classication problems data samples cannot be collected easily, example in drug trials, biological experiments and study on cancer patients. In many situations the data set size is small and there are many outliers. When classifying such data, example cancer vs normal patients the consequences of mis-classication are probably more important than any other data type, because the data point could be a cancer patient or the classication decision could help determine what gene might be over expressed and perhaps a cause of cancer. These mis-classications are typically higher in the presence of outlier data points. The aim of …

Contributors
Gupta, Sidharth, Kim, Seungchan, Welfert, Bruno, et al.
Created Date
2011