Skip to main content

ASU Electronic Theses and Dissertations

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at

The main objective of this research is to develop an approach to PV module lifetime prediction. In doing so, the aim is to move from empirical generalizations to a formal predictive science based on data-driven case studies of the crystalline silicon PV systems. The evaluation of PV systems aged 5 to 30 years old that results in systematic predictive capability that is absent today. The warranty period provided by the manufacturers typically range from 20 to 25 years for crystalline silicon modules. The end of lifetime (for example, the time-to-degrade by 20% from rated power) of PV modules is usually …

Kuitche, Joseph Mathurin, Pan, Rong, TamizhMani, Govindasamy, et al.
Created Date

Transfer learning is a sub-field of statistical modeling and machine learning. It refers to methods that integrate the knowledge of other domains (called source domains) and the data of the target domain in a mathematically rigorous and intelligent way, to develop a better model for the target domain than a model using the data of the target domain alone. While transfer learning is a promising approach in various application domains, my dissertation research focuses on the particular application in health care, including telemonitoring of Parkinson’s Disease (PD) and radiomics for glioblastoma. The first topic is a Mixed Effects Transfer Learning …

Yoon, Hyunsoo, Li, Jing, Wu, Teresa, et al.
Created Date

This dissertation carries out an inter-disciplinary research of operations research, statistics, power system engineering, and economics. Specifically, this dissertation focuses on a special power system scheduling problem, a unit commitment problem with uncertainty. This scheduling problem is a two-stage decision problem. In the first stage, system operator determines the binary commitment status (on or off) of generators in advance. In the second stage, after the realization of uncertainty, the system operator determines generation levels of the generators. The goal of this dissertation is to develop computationally-tractable methodologies and algorithms to solve large-scale unit commitment problems with uncertainty. In the first …

Li, Chao, Hedman, Kory W, Zhang, Muhong, et al.
Created Date