Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Subject
Date Range
2010 2019


It is common in the analysis of data to provide a goodness-of-fit test to assess the performance of a model. In the analysis of contingency tables, goodness-of-fit statistics are frequently employed when modeling social science, educational or psychological data where the interest is often directed at investigating the association among multi-categorical variables. Pearson's chi-squared statistic is well-known in goodness-of-fit testing, but it is sometimes considered to produce an omnibus test as it gives little guidance to the source of poor fit once the null hypothesis is rejected. However, its components can provide powerful directional tests. In this dissertation, orthogonal components …

Contributors
Milovanovic, Jelena, Young, Dennis, Reiser, Mark, et al.
Created Date
2011

Mediation analysis is used to investigate how an independent variable, X, is related to an outcome variable, Y, through a mediator variable, M (MacKinnon, 2008). If X represents a randomized intervention it is difficult to make a cause and effect inference regarding indirect effects without making no unmeasured confounding assumptions using the potential outcomes framework (Holland, 1988; MacKinnon, 2008; Robins & Greenland, 1992; VanderWeele, 2015), using longitudinal data to determine the temporal order of M and Y (MacKinnon, 2008), or both. The goals of this dissertation were to (1) define all indirect and direct effects in a three-wave longitudinal mediation …

Contributors
Valente, Matthew John, MacKinnon, David P, West, Stephen G, et al.
Created Date
2018

The living world we inhabit and observe is extraordinarily complex. From the perspective of a person analyzing data about the living world, complexity is most commonly encountered in two forms: 1) in the sheer size of the datasets that must be analyzed and the physical number of mathematical computations necessary to obtain an answer and 2) in the underlying structure of the data, which does not conform to classical normal theory statistical assumptions and includes clustering and unobserved latent constructs. Until recently, the methods and tools necessary to effectively address the complexity of biomedical data were not ordinarily available. The …

Contributors
Brown, Justin Reed, Dinu, Valentin, Johnson, William, et al.
Created Date
2012

When analyzing longitudinal data it is essential to account both for the correlation inherent from the repeated measures of the responses as well as the correlation realized on account of the feedback created between the responses at a particular time and the predictors at other times. A generalized method of moments (GMM) for estimating the coefficients in longitudinal data is presented. The appropriate and valid estimating equations associated with the time-dependent covariates are identified, thus providing substantial gains in efficiency over generalized estimating equations (GEE) with the independent working correlation. Identifying the estimating equations for computation is of utmost importance. …

Contributors
Yin, Jianqiong, Wilson, Jeffrey Wilson, Reiser, Mark, et al.
Created Date
2012

The dawn of Internet of Things (IoT) has opened the opportunity for mainstream adoption of machine learning analytics. However, most research in machine learning has focused on discovery of new algorithms or fine-tuning the performance of existing algorithms. Little exists on the process of taking an algorithm from the lab-environment into the real-world, culminating in sustained value. Real-world applications are typically characterized by dynamic non-stationary systems with requirements around feasibility, stability and maintainability. Not much has been done to establish standards around the unique analytics demands of real-world scenarios. This research explores the problem of the why so few of …

Contributors
Shahapurkar, Som, Liu, Huan, Davulcu, Hasan, et al.
Created Date
2016

In accelerated life tests (ALTs), complete randomization is hardly achievable because of economic and engineering constraints. Typical experimental protocols such as subsampling or random blocks in ALTs result in a grouped structure, which leads to correlated lifetime observations. In this dissertation, generalized linear mixed model (GLMM) approach is proposed to analyze ALT data and find the optimal ALT design with the consideration of heterogeneous group effects. Two types of ALTs are demonstrated for data analysis. First, constant-stress ALT (CSALT) data with Weibull failure time distribution is modeled by GLMM. The marginal likelihood of observations is approximated by the quadrature rule; …

Contributors
Seo, Kangwon, Pan, Rong, Montgomery, Douglas C, et al.
Created Date
2017

This is a two part thesis: Part 1 of this thesis determines the most dominant failure modes of field aged photovoltaic (PV) modules using experimental data and statistical analysis, FMECA (Failure Mode, Effect, and Criticality Analysis). The failure and degradation modes of about 5900 crystalline-Si glass/polymer modules fielded for 6 to 16 years in three different photovoltaic (PV) power plants with different mounting systems under the hot-dry desert climate of Arizona are evaluated. A statistical reliability tool, FMECA that uses Risk Priority Number (RPN) is performed for each PV power plant to determine the dominant failure modes in the modules …

Contributors
Shrestha, Sanjay Mohan, Tamizhmani, Govindsamy, Srinivasan, Devrajan, et al.
Created Date
2014

Through a two study simulation design with different design conditions (sample size at level 1 (L1) was set to 3, level 2 (L2) sample size ranged from 10 to 75, level 3 (L3) sample size ranged from 30 to 150, intraclass correlation (ICC) ranging from 0.10 to 0.50, model complexity ranging from one predictor to three predictors), this study intends to provide general guidelines about adequate sample sizes at three levels under varying ICC conditions for a viable three level HLM analysis (e.g., reasonably unbiased and accurate parameter estimates). In this study, the data generating parameters for the were obtained …

Contributors
Yel, Nedim, Levy, Roy, Elliott, Stephen N, et al.
Created Date
2016

Smoking remains the leading cause of preventable death in the United States, and early initiation is associated with greater difficulty quitting. Among adolescent smokers, those with attention-deficit hyperactivity disorder (ADHD), characterized by difficulties associated with impulsivity, hyperactivity, and inattention, smoke at nearly twice the rate of their peers. Although cigarette smoking is highly addictive, nicotine is a relatively weak primary reinforcer, spurring research on other potential targets that may maintain smoking, including the potential benefits of nicotine on attention, inhibition, and reinforcer efficacy. The present study employs the most prevalent rodent model of ADHD, the spontaneously hypertensive rat (SHR) and …

Contributors
Mazur, Gabriel Joseph, Sanabria, Federico, Killeen, Peter R, et al.
Created Date
2014

Electricity infrastructure vulnerabilities were assessed for future heat waves due to climate change. Critical processes and component relationships were identified and characterized with consideration for the terminal event of service outages, including cascading failures in transmission-level components that can result in blackouts. The most critical dependency identified was the increase in peak electricity demand with higher air temperatures. Historical and future air temperatures were characterized within and across Los Angeles County, California (LAC) and Maricopa County (Phoenix), Arizona. LAC was identified as more vulnerable to heat waves than Phoenix due to a wider distribution of historical temperatures. Two approaches were …

Contributors
Burillo, Daniel, Chester, Mikhail V, Ruddell, Benjamin, et al.
Created Date
2018