Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Predicting resistant prostate cancer is critical for lowering medical costs and improving the quality of life of advanced prostate cancer patients. I formulate, compare, and analyze two mathematical models that aim to forecast future levels of prostate-specific antigen (PSA). I accomplish these tasks by employing clinical data of locally advanced prostate cancer patients undergoing androgen deprivation therapy (ADT). I demonstrate that the inverse problem of parameter estimation might be too complicated and simply relying on data fitting can give incorrect conclusions, since there is a large error in parameter values estimated and parameters might be unidentifiable. I provide confidence intervals …

Contributors
Baez, Javier, Kuang, Yang, Kostelich, Eric, et al.
Created Date
2017

A least total area of triangle method was proposed by Teissier (1948) for fitting a straight line to data from a pair of variables without treating either variable as the dependent variable while allowing each of the variables to have measurement errors. This method is commonly called Reduced Major Axis (RMA) regression and is often used instead of Ordinary Least Squares (OLS) regression. Results for confidence intervals, hypothesis testing and asymptotic distributions of coefficient estimates in the bivariate case are reviewed. A generalization of RMA to more than two variables for fitting a plane to data is obtained by minimizing …

Contributors
Li, Jingjin, Young, Dennis, Eubank, Randall, et al.
Created Date
2012