Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


To date, the production of algal biofuels is not economically sustainable due to the cost of production and the low cost of conventional fuels. As a result, interest has been shifting to high value products in the algae community to make up for the low economic potential of algal biofuels. The economic potential of high-value products does not however, eliminate the need to consider the environmental impacts. The majority of the environmental impacts associated with algal biofuels overlap with algal bioproducts in general (high-energy dewatering) due to the similarities in their production pathways. Selecting appropriate product sets is a critical …

Contributors
Barr, William James, Landis, Amy E, Westerhoff, Paul, et al.
Created Date
2016

Overall, biofuels play a significant role in future energy sourcing and deserve thorough researching and examining for their best use in achieving sustainable goals. National and state policies are supporting biofuel production as a sustainable option without a holistic view of total impacts. The analysis from this research connects to policies based on life cycle sustainability to identify other environmental impacts beyond those specified in the policy as well as ethical issues that are a concern. A Life cycle assessment (LCA) of switchgrass agriculture indicates it will be challenging to meet U.S. Renewable Fuel Standards with only switchgrass cellulosic ethanol, …

Contributors
Harden, Cheyenne Lillian, Landis, Amy E, Allenby, Braden, et al.
Created Date
2014