Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Distributed Renewable energy generators are now contributing a significant amount of energy into the energy grid. Consequently, reliability adequacy of such energy generators will depend on making accurate forecasts of energy produced by them. Power outputs of Solar PV systems depend on the stochastic variation of environmental factors (solar irradiance, ambient temperature & wind speed) and random mechanical failures/repairs. Monte Carlo Simulation which is typically used to model such problems becomes too computationally intensive leading to simplifying state-space assumptions. Multi-state models for power system reliability offer a higher flexibility in providing a description of system state evolution and an accurate …

Contributors
Kadloor, Nikhil, Kuitche, Joseph, Pan, Rong, et al.
Created Date
2017

Nowadays there is a pronounced interest in the need for sustainable and reliable infrastructure systems to address the challenges of the future infrastructure development. This dissertation presents the research associated with understanding various sustainable and reliable design alternatives for water distribution systems. Although design of water distribution networks (WDN) is a thoroughly studied area, most researchers seem to focus on developing algorithms to solve the non-linear hard kind of optimization problems associated with WDN design. Cost has been the objective in most of the previous studies with few models considering reliability as a constraint, and even fewer models accounting for …

Contributors
Piratla, Kalyan Ram, Ariaratnam, Samuel T, Chasey, Allan, et al.
Created Date
2012