Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Resource Type
Subject
Date Range
2011 2019


Bacteriophage (phage) are viruses that infect bacteria. Typical laboratory experiments show that in a chemostat containing phage and susceptible bacteria species, a mutant bacteria species will evolve. This mutant species is usually resistant to the phage infection and less competitive compared to the susceptible bacteria species. In some experiments, both susceptible and resistant bacteria species, as well as phage, can coexist at an equilibrium for hundreds of hours. The current research is inspired by these observations, and the goal is to establish a mathematical model and explore sufficient and necessary conditions for the coexistence. In this dissertation a model with ...

Contributors
Han, Zhun, Smith, Hal, Armbruster, Dieter, et al.
Created Date
2012

Cancer is a major health problem in the world today and is expected to become an even larger one in the future. Although cancer therapy has improved for many cancers in the last several decades, there is much room for further improvement. Mathematical modeling has the advantage of being able to test many theoretical therapies without having to perform clinical trials and experiments. Mathematical oncology will continue to be an important tool in the future regarding cancer therapies and management. This dissertation is structured as a growing tumor. Chapters 2 and 3 consider spheroid models. These models are adept at ...

Contributors
Rutter, Erica Marie, Kuang, Yang, Kostelich, Eric J, et al.
Created Date
2016

Dopamine (DA) is a neurotransmitter involved in attention, goal oriented behavior, movement, reward learning, and short term and working memory. For the past four decades, mathematical and computational modeling approaches have been useful in DA research, and although every modeling approach has limitations, a model is an efficient way to generate and explore hypotheses. This work develops a model of DA dynamics in a representative, single DA neuron by integrating previous experimental, theoretical and computational research. The model consists of three compartments: the cytosol, the vesicles, and the extracellular space and forms the basis of a new mathematical paradigm for ...

Contributors
Tello-Bravo, David, Crook, Sharon M, Greenwood, Priscilla E, et al.
Created Date
2012

Olfaction is an important sensory modality for behavior since odors inform animals of the presence of food, potential mates, and predators. The fruit fly, Drosophila melanogaster, is a favorable model organism for the investigation of the biophysical mechanisms that contribute to olfaction because its olfactory system is anatomically similar to but simpler than that of vertebrates. In the Drosophila olfactory system, sensory transduction takes place in olfactory receptor neurons housed in the antennae and maxillary palps on the front of the head. The first stage of olfactory processing resides in the antennal lobe, where the structural unit is the glomerulus. ...

Contributors
Luli, Dori, Crook, Sharon, Baer, Steven, et al.
Created Date
2013

A key factor in the success of social animals is their organization of work. Mathematical models have been instrumental in unraveling how simple, individual-based rules can generate collective patterns via self-organization. However, existing models offer limited insights into how these patterns are shaped by behavioral differences within groups, in part because they focus on analyzing specific rules rather than general mechanisms that can explain behavior at the individual-level. My work argues for a more principled approach that focuses on the question of how individuals make decisions in costly environments. In Chapters 2 and 3, I demonstrate how this approach provides ...

Contributors
Udiani, Oyita Udiani, Kang, Yun, Fewell, Jennifer H, et al.
Created Date
2016

Rabies is an infectious viral disease. It is usually fatal if a victim reaches the rabid stage, which starts after the appearance of disease symptoms. The disease virus attacks the central nervous system, and then it migrates from peripheral nerves to the spinal cord and brain. At the time when the rabies virus reaches the brain, the incubation period is over and the symptoms of clinical disease appear on the victim. From the brain, the virus travels via nerves to the salivary glands and saliva. A mathematical model is developed for the spread of rabies in a spatially distributed fox ...

Contributors
Alanazi, Khalaf Matar, Thieme, Horst R., Jackiewicz, Zdzislaw, et al.
Created Date
2018

In a 2004 paper, John Nagy raised the possibility of the existence of a hypertumor \emph{i.e.}, a focus of aggressively reproducing parenchyma cells that invade part or all of a tumor. His model used a system of nonlinear ordinary differential equations to find a suitable set of conditions for which these hypertumors exist. Here that model is expanded by transforming it into a system of nonlinear partial differential equations with diffusion, advection, and a free boundary condition to represent a radially symmetric tumor growth. Two strains of parenchymal cells are incorporated; one forming almost the entirety of the tumor while ...

Contributors
Alvarez, Roberto, Milner, Fabio A, Nagy, John D, et al.
Created Date
2014

Autonomic closure is a new general methodology for subgrid closures in large eddy simulations that circumvents the need to specify fixed closure models and instead allows a fully- adaptive self-optimizing closure. The closure is autonomic in the sense that the simulation itself determines the optimal relation at each point and time between any subgrid term and the variables in the simulation, through the solution of a local system identification problem. It is based on highly generalized representations of subgrid terms having degrees of freedom that are determined dynamically at each point and time in the simulation. This can be regarded ...

Contributors
Kshitij, Abhinav, Dahm, Werner J.A., Herrmann, Marcus, et al.
Created Date
2019

Factory production is stochastic in nature with time varying input and output processes that are non-stationary stochastic processes. Hence, the principle quantities of interest are random variables. Typical modeling of such behavior involves numerical simulation and statistical analysis. A deterministic closure model leading to a second order model for the product density and product speed has previously been proposed. The resulting partial differential equations (PDE) are compared to discrete event simulations (DES) that simulate factory production as a time dependent M/M/1 queuing system. Three fundamental scenarios for the time dependent influx are studied: An instant step up/down of the mean ...

Contributors
Wienke, Matthew Richard, Armbruster, Dieter, Jones, Donald, et al.
Created Date
2015

Advances in experimental techniques have allowed for investigation of molecular dynamics at ever smaller temporal and spatial scales. There is currently a varied and growing body of literature which demonstrates the phenomenon of \emph{anomalous diffusion} in physics, engineering, and biology. In particular many diffusive type processes in the cell have been observed to follow a power law $\left<x^2\right> \propto t^\alpha$ scaling of the mean square displacement of a particle. This contrasts with the expected linear behavior of particles undergoing normal diffusion. \emph{Anomalous sub-diffusion} ($\alpha<1$) has been attributed to factors such as cytoplasmic crowding of macromolecules, and trap-like structures in the ...

Contributors
Holeva, Thomas Matthew, Ringhofer, Christian, Baer, Steve, et al.
Created Date
2014