137806-Thumbnail Image.png
Description
While the use of super-cooled gasses as a tool for the study of macroscopic quantum effects has only become experimentally viable in recent years, theories involing such gasses have existed almost as long as quantum theory itself. Albert Einstein first

While the use of super-cooled gasses as a tool for the study of macroscopic quantum effects has only become experimentally viable in recent years, theories involing such gasses have existed almost as long as quantum theory itself. Albert Einstein first proposed the concept of what is known today as a Bose-Einstein condensate; the driving principle behind his theory was a deliberate exploitation of the symmetric property of multiparticle bosonic wavefunctions. Specifically, since the Bose-Einstein statistics of bosons dic- tate that any arbitrary number of particles can occupy the same state, it is possible in an extremely low energy environment for particles on the order of Avagadro's number to all condense into the ground state. This state of matter is now called a Bose-Einstein condensate (hereafter referred to as a BEC). This state of matter is interesting because having such a large number of particles in the same state allows for the observation of macroscopic quantum effects.
159.85 KB application/pdf

Download restricted. Please sign in.
Restrictions Statement

Barrett Honors College theses and creative projects are restricted to ASU community members.

Details

Title
  • System Size Dependence in Fermionic Superfluids at Unitarity
Contributors
Date Created
2012-12
Resource Type
  • Text
  • Machine-readable links