Description
The focus of this thesis is to study dissolved organic carbon composition and reactivity along the Colorado and Green Rivers. Dissolved organic carbon (DOC) in large-scale, managed rivers is relatively poorly studied as most literature has focused on pristine unmanaged

The focus of this thesis is to study dissolved organic carbon composition and reactivity along the Colorado and Green Rivers. Dissolved organic carbon (DOC) in large-scale, managed rivers is relatively poorly studied as most literature has focused on pristine unmanaged rivers. The Colorado River System is the 7th largest in the North America; there are seventeen large dams along the Colorado and Green River. DOC in rivers and in the lakes formed by dams (reservoirs) undergo photo-chemical and bio-degradation. DOC concentration and composition in these systems were investigated using bulk concentration, optical properties, and fluorescence spectroscopy. The riverine DOC concentration decreased from upstream to downstream but there was no change in the specific ultraviolet absorbance at 254 nm (SUVA254). Total fluorescence also decreased along the river. In general, the fluorescence index (FI) increased slightly, the humification index (HIX) decreased, and the freshness index (β/α) increased from upstream to downstream. Photo-oxidation and biodegradation experiments were used to determine if the observed changes in DOC composition along the river could be driven by these biogeochemical alteration processes.

In two-week natural sunlight photo-oxidation experiments the DOC concentration did not change, while the SUVA254 and TF decreased. In addition, the FI and ‘freshness’ increased and HIX decreased during photo-oxidation. Photo-oxidation can explain the upstream to downstream trends for TF, FI, HIX, and freshness observed in river water. Serial photo-oxidation and biodegradation experiments were performed on water collected from three sites along the Colorado River. Bulk DOC concentration in all samples decreased during the biodegradation portion of the study, but DOC bioavailability was lower in samples that were photo-oxidized prior to the bioavailability study.

The upstream to downstream trends in DOC concentration and composition along the river can be explained by a combination of photo-chemical and microbial degradation. The bulk DOC concentration change is primarily driven by microbial degradation, while the changes in the composition of the fluorescent DOC are driven by photo-oxidation.
Reuse Permissions
  • Downloads
    pdf (1.7 MB)

    Details

    Title
    • Photo-chemical and microbial degradation of dissolved organic carbon in the Colorado River system
    Contributors
    Date Created
    2015
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: M.S., Arizona State University, 2015
      Note type
      thesis
    • Includes bibliographical references
      Note type
      bibliography
    • Field of study: Chemistry

    Citation and reuse

    Statement of Responsibility

    by Margaret Bowman

    Machine-readable links