Description
Magnocellular-Dorsal pathway’s function had been related to reading ability, and visual perceptual learning can effectively increase the function of this neural pathway. Previous researches training people with a traditional dot motion paradigm and an integrated visual perceptual training “video game”

Magnocellular-Dorsal pathway’s function had been related to reading ability, and visual perceptual learning can effectively increase the function of this neural pathway. Previous researches training people with a traditional dot motion paradigm and an integrated visual perceptual training “video game” called Ultimeyes pro, all showed improvement with regard to people’s reading performance. This research used 2 paradigms in 2 groups in order to compare the 2 paradigms’ effect on improving people’s reading ability. We also measured participants’ critical flicker fusion threshold (CFFT), which is related to word decoding ability. The result did not show significant improvement of reading performance in each group, but overall the reading speed improved significantly. The result for CFFT in each group only showed significant improvement among people who trained with Ultimeyes pro. This result supports that the beneficial effect of visual perceptual learning training on people’s reading ability, and it suggests that Ultimeyes pro is more efficient than the traditional dot motion paradigm, and might have more application value.
Reuse Permissions
  • Downloads
    pdf (733.8 KB)

    Details

    Title
    • Comparing different types of visual perceptual learning tasks' effects on reading ability
    Contributors
    Date Created
    2015
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: M.S., Arizona State University, 2015
      Note type
      thesis
    • Includes bibliographical references (pages 16-18)
      Note type
      bibliography
    • Field of study: Psychology

    Citation and reuse

    Statement of Responsibility

    by Tianyou Zhou

    Machine-readable links