Description
The aim of this thesis research is the development of thin silicon heterojunction solar cells with high open circuit voltage (Voc). Heterojunction solar cells are higher in efficiency than diffused junction c-Si solar cells, and they are less vulnerable to

The aim of this thesis research is the development of thin silicon heterojunction solar cells with high open circuit voltage (Voc). Heterojunction solar cells are higher in efficiency than diffused junction c-Si solar cells, and they are less vulnerable to light degradation. Furthermore, the low temperature processing of heterojunction cells favour a decrease in production costs and improve cell performance at the same time. Since about 30 % of the module cost is a result of substrate cost, thin solar cells are of economic advantage than their thicker counterparts. This lead to the research for development of thin heterojunction solar cells. For high cell efficiencies and performance, it is important for cells to have a high operating voltage and Voc. Development of heterojunction cells with high Voc required a stable and repeatable baseline process on which further improvements could be made. Therefore a baseline process for heterojunction solar cells was developed and demonstrated as a pilot line at the Solar Power Lab at ASU. All the processes involved in fabrication of cells with the baseline process were optimized to have a stable and repeatable process. The cells produced with the baseline process were 19-20% efficient. The baseline process was further used as a backbone to improve and develop thin cells with even higher Voc. The process recipe was optimized with an aim to explore the limits of Voc that could be achieved with this structure on a much thinner substrate than used for the baseline process. A record Voc greater than 760mV was recorded at SPL using Suns-Voc tester on a 50 microns thick heterojunction cell without metallization. Furthermore, Voc of 754.2 mV was measured on a 50 microns thick cell with metallization by National Renewable Energy Laboratory (NREL), which is a record for Voc for heterojunction cells with metallization. High Voc corresponds to high cell efficiency and therefore, higher module voltage and power with using the same number of cells as compared to other c-Si solar cells.
Reuse Permissions
  • Downloads
    pdf (2.7 MB)

    Details

    Title
    • Development of thin heterojunction solar cells with high open circuit voltage
    Contributors
    Date Created
    2015
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: M.S., Arizona State University, 2015
      Note type
      thesis
    • Includes bibliographical references (pages 64-67)
      Note type
      bibliography
    • Field of study: Electrical engineering

    Citation and reuse

    Statement of Responsibility

    by Tanmay Monga

    Machine-readable links