Description
Breast cancer is the most common cancer and currently the second leading cause of death among women in the United States. Patients’ five-year relative survival rate decreases from 99% to 25% when breast cancer is diagnosed late. Immune checkpoint blockage

Breast cancer is the most common cancer and currently the second leading cause of death among women in the United States. Patients’ five-year relative survival rate decreases from 99% to 25% when breast cancer is diagnosed late. Immune checkpoint blockage has shown to be a promising therapy to improve patients’ outcome in many other cancers. However, due to the lack of early diagnosis, the treatment is normally given in the later stages. An early diagnosis system for breast cancer could potentially revolutionize current treatment strategies, improve patients’ outcomes and even eradicate the disease. The current breast cancer diagnostic methods cannot meet this demand. A simple, effective, noninvasive and inexpensive early diagnostic technology is needed. Immunosignature technology leverages the power of the immune system to find cancer early. Antibodies targeting tumor antigens in the blood are probed on a high-throughput random peptide array and generate a specific binding pattern called the immunosignature.

In this dissertation, I propose a scenario for using immunosignature technology to detect breast cancer early and to implement an early treatment strategy by using the PD-L1 immune checkpoint inhibitor. I develop a methodology to describe the early diagnosis and treatment of breast cancer in a FVB/N neuN breast cancer mouse model. By comparing FVB/N neuN transgenic mice and age-matched wild type controls, I have found and validated specific immunosignatures at multiple time points before tumors are palpable. Immunosignatures change along with tumor development. Using a late-stage immunosignature to predict early samples, or vice versa, cannot achieve high prediction performance. By using the immunosignature of early breast cancer, I show that at the time of diagnosis, early treatment with the checkpoint blockade, anti-PD-L1, inhibits tumor growth in FVB/N neuN transgenic mouse model. The mRNA analysis of the PD-L1 level in mice mammary glands suggests that it is more effective to have treatment early.

Novel discoveries are changing understanding of breast cancer and improving strategies in clinical treatment. Researchers and healthcare professionals are actively working in the early diagnosis and early treatment fields. This dissertation provides a step along the road for better diagnosis and treatment of breast cancer.
Reuse Permissions
  • Downloads
    pdf (3.7 MB)

    Details

    Title
    • Early detection and treatment of breast cancer by random peptide array in neuN transgenic mouse model
    Contributors
    Date Created
    2015
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: Ph. D., Arizona State University, 2015
      Note type
      thesis
    • Includes bibliographical references (pages 93-117)
      Note type
      bibliography
    • Field of study: Biological design

    Citation and reuse

    Statement of Responsibility

    by Hu Duan

    Machine-readable links