Description
This study uses Computational Fluid Dynamics (CFD) modeling to analyze the

dependence of wind power potential and turbulence intensity on aerodynamic design of a

special type of building with a nuzzle-like gap at its rooftop. Numerical simulations using

ANSYS Fluent are carried out

This study uses Computational Fluid Dynamics (CFD) modeling to analyze the

dependence of wind power potential and turbulence intensity on aerodynamic design of a

special type of building with a nuzzle-like gap at its rooftop. Numerical simulations using

ANSYS Fluent are carried out to quantify the above-mentioned dependency due to three

major geometric parameters of the building: (i) the height of the building, (ii) the depth of

the roof-top gap, and (iii) the width of the roof-top gap. The height of the building is varied

from 8 m to 24 m. Likewise, the gap depth is varied from 3 m to 5 m and the gap width

from 2 m to 4 m. The aim of this entire research is to relate these geometric parameters of

the building to the maximum value and the spatial pattern of wind power potential across

the roof-top gap. These outcomes help guide the design of the roof-top geometry for wind

power applications and determine the ideal position for mounting a micro wind turbine.

From these outcomes, it is suggested that the wind power potential is greatly affected by

the increasing gap width or gap depth. It, however, remains insensitive to the increasing

building height, unlike turbulence intensity which increases with increasing building

height. After performing a set of simulations with varying building geometry to quantify

the wind power potential before the installation of a turbine, another set of simulations is

conducted by installing a static turbine within the roof-top gap. The results from the latter

are used to further adjust the estimate of wind power potential. Recommendations are made

for future applications based on the findings from the numerical simulations.
Reuse Permissions
  • Downloads
    pdf (2.1 MB)

    Details

    Title
    • CFD analysis of wind power potential across rooftop gaps of tall buildings
    Contributors
    Date Created
    2017
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: M.S., Arizona State University, 2017
      Note type
      thesis
    • Includes bibliographical references (page 43)
      Note type
      bibliography
    • Field of study: Mechanical engineering

    Citation and reuse

    Statement of Responsibility

    by Gargi Kailkhura

    Machine-readable links