Skip to main content

Creep-Fatigue Damage Investigation and Modeling of Alloy 617 at High Temperatures


Abstract The Very High Temperature Reactor (VHTR) is one of six conceptual designs proposed for Generation IV nuclear reactors. Alloy 617, a solid solution strengthened Ni-base superalloy, is currently the primary candidate material for the tubing of the Intermediate Heat Exchanger (IHX) in the VHTR design. Steady-state operation of the nuclear power plant at elevated temperatures leads to creep deformation, whereas loading transients including startup and shutdown generate fatigue. A detailed understanding of the creep-fatigue interaction in Alloy 617 is necessary before it can be considered as a material for nuclear construction in ASME Boiler and Pressure Vessel Code. Current design codes for components undergoing creep-fatigue interaction at ele... (more)
Created Date 2017
Contributor Tahir, Fraaz (Author) / Liu, Yongming (Advisor) / Jiang, Hanqing (Committee member) / Rajagopalan, Jagannathan (Committee member) / Oswald, Jay (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Subject Mechanical engineering / Materials Science / Engineering / creep / fatigue / life prediction
Type Doctoral Dissertation
Extent 111 pages
Language English
Copyright
Reuse Permissions All Rights Reserved
Note Doctoral Dissertation Mechanical Engineering 2017
Collaborating Institutions Graduate College / ASU Library
Additional Formats MODS / OAI Dublin Core / RIS


  Full Text
4.3 MB application/pdf
Download Count: 1290

Description Dissertation/Thesis