Description

Resilient infrastructure research has produced a myriad of conflicting definitions and analytic frameworks, highlighting the difficulty of creating a foundational theory that informs disciplines as diverse as business, engineering, ecology, and disaster risk reduction. Nevertheless, there is growing agreement that

Resilient infrastructure research has produced a myriad of conflicting definitions and analytic frameworks, highlighting the difficulty of creating a foundational theory that informs disciplines as diverse as business, engineering, ecology, and disaster risk reduction. Nevertheless, there is growing agreement that resilience is a desirable property for infrastructure systems – i.e., that more resilience is always better. Unfortunately, this view ignore that the fact that a single concept of resilience is insufficient to ensure effective performance under diverse and volatile stresses. Scholarship in resilience engineering has identified at least four irreducible resilience concepts, including: rebound, robustness, graceful extensibility, and sustained adaptability.

In this paper, we clarify the meaning of the word resilience and its use, explain the advantages of the pluralistic approach to advancing resilience theory, and clarify two of the four conceptual understandings: robustness and graceful extensibility. Furthermore, we draw upon examples in electric power, transportation, and water systems that illustrate positive and negative cases of resilience in infrastructure management and crisis response. The following conclusions result:

1. Robustness and graceful extensibility are different strategies for resilience that draw upon different system characteristics.
2. Neither robustness nor extensibility can prevent all hazards.
3. While systems can perform both strategies simultaneously, their drawbacks are different.

Robust infrastructure systems fail when policies and procedures become stale, or when faced with overwhelming surprise. Extensible systems fail when a lack of coordination or exhaustion of resources results from decompensation. Consequently, resilience is found neither only in robustness, nor only in extensibility, but in the capacity apply both and switch between them at will.

Downloads
pdf (1 MB)

Details

Title
  • Robustness and Extensibility in Infrastructure Systems
Contributors
Date Created
2017-07-17
Resource Type
  • Text
  • Collections this item is in
    Note
    • Draft of manuscript under review at Reliability Engineering and System Safety

    Machine-readable links