Description

Achieving and controlling strong light-matter interactions in many-body systems is of paramount importance both for fundamental understanding and potential applications. In this paper we demonstrate both experimentally and theoretically how to manipulate strong coupling between the Bragg-plasmon mode supported by

Achieving and controlling strong light-matter interactions in many-body systems is of paramount importance both for fundamental understanding and potential applications. In this paper we demonstrate both experimentally and theoretically how to manipulate strong coupling between the Bragg-plasmon mode supported by an organo-metallic array and molecular excitons in the form of J-aggregates dispersed on the hybrid structure. We observe experimentally the transition from a conventional strong coupling regime exhibiting the usual upper and lower polaritonic branches to a more complex regime, where a third nondispersive mode is seen, as the concentration of J-aggregates is increased. The numerical simulations confirm the presence of the third resonance. We attribute its physical nature to collective molecule-molecule interactions leading to a collective electromagnetic response. A simple analytical model is proposed to explain the physics of the third mode. The nonlinear dependence on molecular parameters followed from the model are confirmed in a set of rigorous numerical studies. It is shown that at the energy of the collective mode molecules oscillate completely out of phase with the incident radiation acting as an effictive thin metal layer.

Reuse Permissions
  • Downloads
    pdf (2 MB)

    Details

    Title
    • Plasmonic Opals: Observation of a Collective Molecular Exciton Mode Beyond the Strong Coupling
    Date Created
    2017-06-22
    Resource Type
  • Text
  • Collections this item is in
    Identifier
    • Digital object identifier: 10.1038/s41598-017-03305-8
    • Identifier Type
      International standard serial number
      Identifier Value
      2045-2322
    Note

    Citation and reuse

    Cite this item

    This is a suggested citation. Consult the appropriate style guide for specific citation guidelines.

    Fauché, P., Gebhardt, C., Sukharev, M., & Vallée, R. A. (2017). Plasmonic opals: observation of a collective molecular exciton mode beyond the strong coupling. Scientific Reports, 7(1). doi:10.1038/s41598-017-03305-8

    Machine-readable links