133230-Thumbnail Image.png
Description
Central to current conceptions concerning the function of the nervous system is the consideration of how it manages to maintain precise control for repetitive tasks such as reaching, given the extensive observable mechanical degrees of freedom. Especially in the upper

Central to current conceptions concerning the function of the nervous system is the consideration of how it manages to maintain precise control for repetitive tasks such as reaching, given the extensive observable mechanical degrees of freedom. Especially in the upper extremities, there are an infinite number of orientations (degrees of freedom) that can produce the same ultimate outcome. Consider, for example, a man in a seated position pointing to an object on a table with his index finger: even if we vastly simplify the mechanics involved in that action by considering three principle joints - the shoulder, elbow, and wrist - there are an infinite number of upper arm orientations that would result in the same position of the man's index finger in three-dimensional space. It has been hypothesized that the central nervous system is capable of simplifying reaching tasks by organizing the DOFs; this suggests that repetitive, simple tasks such as reaching can be planned, that the variability in repetitive tasks is minimized, and that the central nervous system is capable of increasing stability by instantaneously resisting perturbations. Previous literature indicates that variability is decreased and stability increased in trained upper extremity movement. In this study, mechanical discrepancies between violinists of varying levels of experience were identified. It was hypothesized that variability in the positional error (deviation from an expected line of motion) and velocity of the bow, as well as the produced variability in resultant elbow angles, would decrease with increasing proficiency, and that training would have no observable effect on average peak bow velocity. Data acquisition was accomplished by constructing LED triads and implementing a PhaseSpace 3D Motion Capture system. While the positional variance and peak velocity magnitude of the bow appeared unaffected by training (p >> 0.05), more advanced players demonstrated significantly higher variability in bow velocity (p << 0.001). As such, it can be concluded that repetitive training does manifest in changes in variability; however, further investigation is required to reveal the nature of these changes.
577.56 KB application/pdf

Download restricted. Please sign in.

Details

Title
  • A Mechanical Analysis of Trained Violinist Kinematics
Contributors
Date Created
2018-05
Resource Type
  • Text
  • Machine-readable links