Description
Explosive mafic (basaltic) volcanism is not easily explained by current eruption models, which predict low energy eruptions from low viscosity magma due to decoupling of volatiles (gases). Sunset Crater volcano provides an example of an alkali basalt magma that produced

Explosive mafic (basaltic) volcanism is not easily explained by current eruption models, which predict low energy eruptions from low viscosity magma due to decoupling of volatiles (gases). Sunset Crater volcano provides an example of an alkali basalt magma that produced a highly explosive sub-Plinian eruption. I investigate the possible role of magmatic volatiles in the Sunset Crater eruption through study of natural samples of trapped volatiles (melt inclusions) and experiments on mixed-volatile (H2O-CO2) solubility in alkali-rich mafic magmas.

I conducted volatile-saturated experiments in six mafic magma compositions at pressures between 400 MPa and 600 MPa to investigate the influence of alkali elements (sodium and potassium) on volatile solubility. The experiments show that existing volatile solubility models do not accurately describe CO2 solubility at mid-crustal depths. I calculate thermodynamic fits for solubility in each composition and calibrate a general thermodynamic model for application to other mafic magmas. The model shows that the relative percent abundances of sodium, calcium, and potassium have the greatest influence on CO2 solubility in mafic magmas.

I analyzed olivine-hosted melt inclusions (MIs) from Sunset Crater to investigate pre-eruptive volatiles. I compared the early fissure activity to the sub-Plinian eruptive phases. The MIs are similar in major element and volatile composition suggesting a relatively homogeneous magma. The H2O content is relatively low (~1.2 wt%), whereas the dissolved CO2 content is high (~2300 ppm). I explored rehomogenization and Raman spectroscopy to quantify CO2 abundance in MI vapor bubbles. Calculations of post-entrapment bubble growth suggest that some MI bubbles contain excess CO2. This implies that the magma was volatile-saturated and MIs trapped exsolved vapor during their formation. The total volatile contents of MIs, including bubble contents but excluding excess vapor, indicate pre-eruptive magma storage from 10 km to 18 km depth.

The high CO2 abundance found in Sunset Crater MIs allowed the magma to reach volatile-saturation at mid-crustal depths and generate overpressure, driving rapid ascent to produce the explosive eruption. The similarities in MIs and volatiles between the fissure eruption and the sub-Plinian phases indicate that shallow-level processes also likely influenced the final eruptive behavior.
Reuse Permissions
  • Downloads
    pdf (63.5 MB)

    Details

    Title
    • Highly explosive mafic volcanism: the role of volatiles
    Contributors
    Date Created
    2018
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: Ph.D., Arizona State University, 2018
      Note type
      thesis
    • Includes bibliographical references (pages 161-174)
      Note type
      bibliography
    • Field of study: Geological sciences

    Citation and reuse

    Statement of Responsibility

    by Chelsea Maria Allison

    Machine-readable links