Description
Granulation is a process within particle technology where a liquid binding agent is added to a powder bed to create larger granules to modify bulk properties for easier processing. Three sets of experiments were conducted to screen for which

Granulation is a process within particle technology where a liquid binding agent is added to a powder bed to create larger granules to modify bulk properties for easier processing. Three sets of experiments were conducted to screen for which factors had the greatest effect on granule formation, size distribution, and morphological properties when wet granulating microcrystalline cellulose and water. Previous experiments had identified the different growth regimes within wet granulation, as well as the granule formation mechanisms in single-drop granulation experiments, but little research has been conducted to determine how results extracted from single drop experiments could be used to better understand the first principles that drive high shear granulation. The experiment found that under a liquid solid ratio of 110%, the granule growth rate was linear as opposed to the induction growth regime experienced at higher liquid solid ratios. L/S ratios less than 100% led to a bimodal distribution comprised of large distributions of ungranulated powder and large irregular granules. Insufficient water hampered the growth of granules due to lack of enough water bridges to connect the granules and powder, while the large molecules continued to agglomerate with particles as they rotated around the mixer. The nozzle end was augmented so that drop size as well as drop height could be adjusted and compared to single-drop granulation experiments in proceeding investigations. As individual factors, neither augmentation had significant contributions to granule size, but preliminary screens identified that interaction between increasing L/S ratio and decreasing drop size could lead to narrower distributions of particles as well as greater circularity. Preliminary screening also identified that decreasing the drop height of the nozzle could increase the rate of particle growth during the 110% L/S trials without changing the growth mechanisms, indicating a way to alter the rate of steady-state particle growth. This paper screens for which factors are most pertinent to associating single-drop and wet granulation in order to develop granulation models that can ascertain information from single-drop granulations and predict the shape and size distribution of any wet granulation, without the need to run costly wet granulation experiments.
Downloads
pdf (1.6 MB)

Details

Title
  • Statistical Investigations of Parameters that Drive High-Shear Granulation
Contributors
Date Created
2019
Resource Type
  • Text
  • Collections this item is in
    Note
    • Masters Thesis Chemical Engineering 2019

    Machine-readable links