Description
Transgenic experiments in Drosophila have proven to be a useful tool aiding in the

determination of mammalian protein function. A CNS specific protein, dCORL is a

member of the Sno/Ski family. Sno acts as a switch between Dpp/dActivin signaling.

dCORL is involved in

Transgenic experiments in Drosophila have proven to be a useful tool aiding in the

determination of mammalian protein function. A CNS specific protein, dCORL is a

member of the Sno/Ski family. Sno acts as a switch between Dpp/dActivin signaling.

dCORL is involved in Dpp and dActivin signaling, but the two homologous mCORL

protein functions are unknown. Conducting transgenic experiments in the adult wings,

and third instar larval brains using mCORL1, mCORL2 and dCORL are used to provide

insight into the function of these proteins. These experiments show mCORL1 has a

different function from mCORL2 and dCORL when expressed in Drosophila. mCORL2

and dCORL have functional similarities that are likely conserved. Six amino acid

substitutions between mCORL1 and mCORL2/dCORL may be the reason for the

functional difference. The evolutionary implications of this research suggest the

conservation of a switch between Dpp/dActivin signaling that predates the divergence of

arthropods and vertebrates.
Downloads
pdf (1.4 MB)

Details

Title
  • Evolutionary Genetics of CORL Proteins
Contributors
Date Created
2019
Resource Type
  • Text
  • Collections this item is in
    Note
    • Masters Thesis Biology 2019

    Machine-readable links