Description
Coccidioidomycosis or Valley Fever (VF) is an emerging fungal respiratory infection endemic to the southwest region of the United States, and parts of Mexico, Central and South America. Satellite cases have also been reported in Washington and Oregon. It

Coccidioidomycosis or Valley Fever (VF) is an emerging fungal respiratory infection endemic to the southwest region of the United States, and parts of Mexico, Central and South America. Satellite cases have also been reported in Washington and Oregon. It is estimated that in Maricopa County alone, VF accounts for 10-30% of community-acquired pneumonia. Difficulty in diagnosis is largely attributed to lack of antibody reactivity to antigens used in diagnosis, especially early in disease. Serological detection of VF employs mycelial-phase culture filtrates as antigen. While culture filtrates are thought to provide the most specific diagnostic antigen, preparation includes the growth of large volume Coccidioides cultures which require employment of extensive safety precautions in a BSL3 setting. An additional concern with use of culture filtrates as an antigen source is batch variability, as expression of immunogenic proteins within each lot are variable. To address safety and batch variability concerns, this thesis proposes the use of recombinant Coccidioides proteins as a consistent and reliable antigen source. For the purpose of this study, I expressed known antigenic Coccidioides proteins in a eukaryotic, recombinant protein expression system. Recombinant endochitinase-1 (rCTS1) and recombinant heat-labile antigen (rHL-Ag) were evaluated for serologic reactivity by ELISA, using a sample set of 55 known serologically positive and 55 known negative human sera specimens, previously tested in Mayo Clinic Arizona (MCA) serologic laboratories. Evaluation by ELISA demonstrated 94.55% sensitivity and 92.72% specificity using combined rCTS1 and rHL-Ag as an antigen source, indicating promising diagnostic utility.
Downloads
pdf (7.4 MB)

Details

Title
  • Characterization of the Human Humoral Response to Recombinant Coccidioides posadasii Antigens
Contributors
Date Created
2020
Resource Type
  • Text
  • Collections this item is in
    Note
    • Masters Thesis Molecular and Cellular Biology 2020

    Machine-readable links