Description
A new method of adaptive mesh generation for the computation of fluid flows is investigated. The method utilizes gradients of the flow solution to adapt the size and stretching of elements or volumes in the computational mesh as is

A new method of adaptive mesh generation for the computation of fluid flows is investigated. The method utilizes gradients of the flow solution to adapt the size and stretching of elements or volumes in the computational mesh as is commonly done in the conventional Hessian approach. However, in the new method, higher-order gradients are used in place of the Hessian. The method is applied to the finite element solution of the incompressible Navier-Stokes equations on model problems. Results indicate that a significant efficiency benefit is realized.
Reuse Permissions
  • Downloads
    pdf (4.5 MB)

    Details

    Title
    • Adaptive mesh generation for solution of incompressible fluid flows using high order gradients
    Contributors
    Date Created
    2011
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: Ph.D., Arizona State University, 2011
      Note type
      thesis
    • Includes bibliographical references (p. 81-83)
      Note type
      bibliography
    • Field of study: Aerospace engineering

    Citation and reuse

    Statement of Responsibility

    by Randall Shortridge

    Machine-readable links